Refacer / app.py
Ii
Update app.py
ac304d9 verified
raw
history blame
2.88 kB
import io
import gradio as gr
from refacer import Refacer
import os
import requests
# Hugging Face URL to download the model
model_url = "https://huggingface.co/ofter/4x-UltraSharp/resolve/main/inswapper_128.onnx"
model_path = "/home/user/app/inswapper_128.onnx" # Absolute path for the model in your environment
# Function to download the model if not exists
def download_model():
if not os.path.exists(model_path):
print("Downloading the inswapper_128.onnx model...")
response = requests.get(model_url)
if response.status_code == 200:
with open(model_path, 'wb') as f:
f.write(response.content)
print("Model downloaded successfully!")
else:
print(f"Error: Model download failed. Status code: {response.status_code}")
else:
print("Model already exists.")
# Download the model when the script runs
download_model()
# Initialize the Refacer class
refacer = Refacer(force_cpu=False, colab_performance=False)
# Run function for refacing video
def run(video_path, *vars):
origins = vars[:5]
destinations = vars[5:10]
thresholds = vars[10:]
faces = []
for k in range(5):
if origins[k] is not None and destinations[k] is not None:
faces.append({
'origin': origins[k],
'destination': destinations[k],
'threshold': thresholds[k]
})
# Call refacer to process video and get refaced video path
refaced_video_path = refacer.reface(video_path, faces)
print(f"Refaced video can be found at {refaced_video_path}")
# Convert the output video to memory buffer
video_buffer = io.BytesIO()
with open(refaced_video_path, "rb") as f:
video_buffer.write(f.read())
# Rewind the buffer to the beginning
video_buffer.seek(0)
return video_buffer # Gradio will handle the video display
# Prepare Gradio components
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("# Refacer")
with gr.Row():
video = gr.Video(label="Original video", format="mp4")
video2 = gr.Video(label="Refaced video", interactive=False, format="mp4")
origins, destinations, thresholds = [], [], []
for i in range(5):
with gr.Tab(f"Face #{i+1}"):
with gr.Row():
origins.append(gr.Image(label="Face to replace"))
destinations.append(gr.Image(label="Destination face"))
with gr.Row():
thresholds.append(gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.2))
with gr.Row():
button = gr.Button("Reface", variant="primary")
button.click(fn=run, inputs=[video] + origins + destinations + thresholds, outputs=[video2])
# Launch the Gradio app
demo.queue().launch(show_error=True, server_name="0.0.0.0", server_port=7860)