import io import gradio as gr from refacer import Refacer import os import requests # Hugging Face URL to download the model model_url = "https://huggingface.co/ofter/4x-UltraSharp/resolve/main/inswapper_128.onnx" model_path = "/home/user/app/inswapper_128.onnx" # Absolute path for the model in your environment # Function to download the model if not exists def download_model(): if not os.path.exists(model_path): print("Downloading the inswapper_128.onnx model...") response = requests.get(model_url) if response.status_code == 200: with open(model_path, 'wb') as f: f.write(response.content) print("Model downloaded successfully!") else: print(f"Error: Model download failed. Status code: {response.status_code}") else: print("Model already exists.") # Download the model when the script runs download_model() # Initialize the Refacer class refacer = Refacer(force_cpu=False, colab_performance=False) # Run function for refacing video def run(video_path, *vars): origins = vars[:5] destinations = vars[5:10] thresholds = vars[10:] faces = [] for k in range(5): if origins[k] is not None and destinations[k] is not None: faces.append({ 'origin': origins[k], 'destination': destinations[k], 'threshold': thresholds[k] }) # Call refacer to process video and get refaced video path refaced_video_path = refacer.reface(video_path, faces) print(f"Refaced video can be found at {refaced_video_path}") # Convert the output video to memory buffer video_buffer = io.BytesIO() with open(refaced_video_path, "rb") as f: video_buffer.write(f.read()) # Rewind the buffer to the beginning video_buffer.seek(0) return video_buffer # Gradio will handle the video display # Prepare Gradio components with gr.Blocks() as demo: with gr.Row(): gr.Markdown("# Refacer") with gr.Row(): video = gr.Video(label="Original video", format="mp4") video2 = gr.Video(label="Refaced video", interactive=False, format="mp4") origins, destinations, thresholds = [], [], [] for i in range(5): with gr.Tab(f"Face #{i+1}"): with gr.Row(): origins.append(gr.Image(label="Face to replace")) destinations.append(gr.Image(label="Destination face")) with gr.Row(): thresholds.append(gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.2)) with gr.Row(): button = gr.Button("Reface", variant="primary") button.click(fn=run, inputs=[video] + origins + destinations + thresholds, outputs=[video2]) # Launch the Gradio app demo.queue().launch(show_error=True, server_name="0.0.0.0", server_port=7860)