Spaces:
Running
Running
acmc
commited on
Commit
·
115f2ee
1
Parent(s):
36c5b68
new model
Browse files- app.py +40 -40
- institutions.csv +0 -0
- model/.data-00000-of-00001 +2 -2
- model/.index +1 -1
- model/model_metadata.ampkl +2 -2
app.py
CHANGED
@@ -112,30 +112,30 @@ def process_user_input_concept(concept_chooser):
|
|
112 |
|
113 |
# Now, average the similarities
|
114 |
scores = np.stack(list(all_similarities.values()), axis=0)
|
115 |
-
scores = np.mean(
|
116 |
|
117 |
table_df = pd.DataFrame(
|
118 |
{
|
119 |
-
"
|
120 |
-
"
|
121 |
-
"
|
122 |
# "num_articles": all_ids_institutions[:, 2].astype(int),
|
123 |
}
|
124 |
)
|
125 |
|
126 |
# Add the individual similarities
|
127 |
for i, concept in enumerate(chosen_concepts):
|
128 |
-
table_df[f"
|
129 |
|
130 |
# Reorder the columns so that the mean similarity is after the individual similarities and before the institution name
|
131 |
table_df = table_df[
|
132 |
-
["
|
133 |
-
+ [f"
|
134 |
-
+ ["
|
135 |
]
|
136 |
|
137 |
# Sort by mean similarity
|
138 |
-
table_df = table_df.sort_values(by=["
|
139 |
|
140 |
concept_names = [get_concept_name(concept_uri) for concept_uri in chosen_concepts]
|
141 |
return (
|
@@ -151,7 +151,7 @@ def calculate_emdeddings_and_pca(table):
|
|
151 |
gr.Info("Performing PCA and clustering...")
|
152 |
# Perform PCA
|
153 |
embeddings_of_institutions = model.get_embeddings(
|
154 |
-
entities=np.array(table["
|
155 |
)
|
156 |
|
157 |
entity_embeddings_pca = pca(embeddings_of_institutions)
|
@@ -161,9 +161,9 @@ def calculate_emdeddings_and_pca(table):
|
|
161 |
|
162 |
plot_df = pd.DataFrame(
|
163 |
{
|
164 |
-
"
|
165 |
-
"
|
166 |
-
"
|
167 |
}
|
168 |
)
|
169 |
|
@@ -173,16 +173,16 @@ def calculate_emdeddings_and_pca(table):
|
|
173 |
|
174 |
|
175 |
def click_on_institution(table, embeddings_var, evt: gr.SelectData):
|
176 |
-
institution_id = table["
|
177 |
try:
|
178 |
embeddings_df = embeddings_var["embeddings_df"]
|
179 |
plot_df = pd.DataFrame(
|
180 |
{
|
181 |
-
"
|
182 |
-
"
|
183 |
-
"
|
184 |
-
"
|
185 |
-
"
|
186 |
# "num_articles": table["num_articles"].values,
|
187 |
}
|
188 |
)
|
@@ -196,11 +196,11 @@ def click_on_show_plot(table):
|
|
196 |
|
197 |
plot_df = pd.DataFrame(
|
198 |
{
|
199 |
-
"
|
200 |
-
"Institution_name": table["
|
201 |
-
"
|
202 |
-
"
|
203 |
-
"
|
204 |
# "num_articles": table["num_articles"].values,
|
205 |
}
|
206 |
)
|
@@ -215,17 +215,17 @@ def plot_embeddings(plot_df, institution_id):
|
|
215 |
# fig.title("{} embeddings".format(parameter).capitalize())
|
216 |
ax = sns.scatterplot(
|
217 |
data=plot_df,
|
218 |
-
x="
|
219 |
-
y="
|
220 |
-
hue="
|
221 |
)
|
222 |
|
223 |
-
row_of_institution = plot_df[plot_df["
|
224 |
if not row_of_institution.empty:
|
225 |
ax.text(
|
226 |
-
row_of_institution["
|
227 |
-
row_of_institution["
|
228 |
-
row_of_institution["
|
229 |
horizontalalignment="left",
|
230 |
size="medium",
|
231 |
color="black",
|
@@ -233,20 +233,20 @@ def plot_embeddings(plot_df, institution_id):
|
|
233 |
)
|
234 |
# Also draw a point for the institution
|
235 |
ax.scatter(
|
236 |
-
row_of_institution["
|
237 |
-
row_of_institution["
|
238 |
color="black",
|
239 |
s=100,
|
240 |
marker="x",
|
241 |
)
|
242 |
# texts = []
|
243 |
# for i, point in plot_df.iterrows():
|
244 |
-
# if point["
|
245 |
# texts.append(
|
246 |
# fig.text(
|
247 |
-
# point["
|
248 |
-
# point["
|
249 |
-
# str(point["
|
250 |
# )
|
251 |
# )
|
252 |
# adjust_text(texts)
|
@@ -257,9 +257,9 @@ def get_authors_of_institution(institutions_table, concept_chooser, evt: gr.Sele
|
|
257 |
"""
|
258 |
Get the authors of an institution
|
259 |
"""
|
260 |
-
institution = institutions_table["
|
261 |
number_of_row = evt.index[0]
|
262 |
-
institution = institutions_table["
|
263 |
concepts = separate_concepts(concept_chooser)
|
264 |
results_dfs = []
|
265 |
for concept in concepts:
|
@@ -269,7 +269,7 @@ def get_authors_of_institution(institutions_table, concept_chooser, evt: gr.Sele
|
|
269 |
WHERE {{
|
270 |
?author a <urn:acmcmc:unis:Author> .
|
271 |
?author <urn:acmcmc:unis:name> ?name .
|
272 |
-
?article <urn:acmcmc:unis:written_in_institution> <{
|
273 |
?article <urn:acmcmc:unis:has_author> ?author .
|
274 |
?article <urn:acmcmc:unis:related_to_concept> <{concept}> .
|
275 |
}}
|
|
|
112 |
|
113 |
# Now, average the similarities
|
114 |
scores = np.stack(list(all_similarities.values()), axis=0)
|
115 |
+
scores = np.mean(scores, axis=0)
|
116 |
|
117 |
table_df = pd.DataFrame(
|
118 |
{
|
119 |
+
"institution": s,
|
120 |
+
"mean_similarity": scores.flatten(),
|
121 |
+
"institution_name": all_ids_institutions[:, 1],
|
122 |
# "num_articles": all_ids_institutions[:, 2].astype(int),
|
123 |
}
|
124 |
)
|
125 |
|
126 |
# Add the individual similarities
|
127 |
for i, concept in enumerate(chosen_concepts):
|
128 |
+
table_df[f"similarity_to_{chosen_concepts_names[i]}"] = all_similarities[concept]
|
129 |
|
130 |
# Reorder the columns so that the mean similarity is after the individual similarities and before the institution name
|
131 |
table_df = table_df[
|
132 |
+
["institution"]
|
133 |
+
+ [f"similarity_to_{chosen_concepts_names[i]}" for i in range(len(chosen_concepts))]
|
134 |
+
+ ["mean_similarity", "institution_name"]
|
135 |
]
|
136 |
|
137 |
# Sort by mean similarity
|
138 |
+
table_df = table_df.sort_values(by=["mean_similarity"], ascending=False)
|
139 |
|
140 |
concept_names = [get_concept_name(concept_uri) for concept_uri in chosen_concepts]
|
141 |
return (
|
|
|
151 |
gr.Info("Performing PCA and clustering...")
|
152 |
# Perform PCA
|
153 |
embeddings_of_institutions = model.get_embeddings(
|
154 |
+
entities=np.array(table["institution"])
|
155 |
)
|
156 |
|
157 |
entity_embeddings_pca = pca(embeddings_of_institutions)
|
|
|
161 |
|
162 |
plot_df = pd.DataFrame(
|
163 |
{
|
164 |
+
"embedding_x": entity_embeddings_pca[:, 0],
|
165 |
+
"embedding_y": entity_embeddings_pca[:, 1],
|
166 |
+
"cluster": "cluster" + pd.Series(clusters).astype(str),
|
167 |
}
|
168 |
)
|
169 |
|
|
|
173 |
|
174 |
|
175 |
def click_on_institution(table, embeddings_var, evt: gr.SelectData):
|
176 |
+
institution_id = table["institution"][evt.index[0]]
|
177 |
try:
|
178 |
embeddings_df = embeddings_var["embeddings_df"]
|
179 |
plot_df = pd.DataFrame(
|
180 |
{
|
181 |
+
"institution": table["institution"].values,
|
182 |
+
"institution_name": table["institution_name"].values,
|
183 |
+
"embedding_x": embeddings_df["embedding_x"].values,
|
184 |
+
"embedding_y": embeddings_df["embedding_y"].values,
|
185 |
+
"cluster": embeddings_df["cluster"].values,
|
186 |
# "num_articles": table["num_articles"].values,
|
187 |
}
|
188 |
)
|
|
|
196 |
|
197 |
plot_df = pd.DataFrame(
|
198 |
{
|
199 |
+
"institution": table["institution"].values,
|
200 |
+
"Institution_name": table["institution Name"].values,
|
201 |
+
"embedding_x": embeddings_df["embedding_x"].values,
|
202 |
+
"embedding_y": embeddings_df["embedding_y"].values,
|
203 |
+
"cluster": embeddings_df["cluster"].values,
|
204 |
# "num_articles": table["num_articles"].values,
|
205 |
}
|
206 |
)
|
|
|
215 |
# fig.title("{} embeddings".format(parameter).capitalize())
|
216 |
ax = sns.scatterplot(
|
217 |
data=plot_df,
|
218 |
+
x="embedding_x",
|
219 |
+
y="embedding_y",
|
220 |
+
hue="cluster",
|
221 |
)
|
222 |
|
223 |
+
row_of_institution = plot_df[plot_df["institution"] == institution_id]
|
224 |
if not row_of_institution.empty:
|
225 |
ax.text(
|
226 |
+
row_of_institution["embedding_x"],
|
227 |
+
row_of_institution["embedding_y"],
|
228 |
+
row_of_institution["institution_name"].values[0],
|
229 |
horizontalalignment="left",
|
230 |
size="medium",
|
231 |
color="black",
|
|
|
233 |
)
|
234 |
# Also draw a point for the institution
|
235 |
ax.scatter(
|
236 |
+
row_of_institution["embedding_x"],
|
237 |
+
row_of_institution["embedding_y"],
|
238 |
color="black",
|
239 |
s=100,
|
240 |
marker="x",
|
241 |
)
|
242 |
# texts = []
|
243 |
# for i, point in plot_df.iterrows():
|
244 |
+
# if point["institution"] == institution_id:
|
245 |
# texts.append(
|
246 |
# fig.text(
|
247 |
+
# point["embedding_x"] + 0.02,
|
248 |
+
# point["embedding_y"] + 0.01,
|
249 |
+
# str(point["institution_name"]),
|
250 |
# )
|
251 |
# )
|
252 |
# adjust_text(texts)
|
|
|
257 |
"""
|
258 |
Get the authors of an institution
|
259 |
"""
|
260 |
+
institution = institutions_table["institution"][0]
|
261 |
number_of_row = evt.index[0]
|
262 |
+
institution = institutions_table["institution"][number_of_row]
|
263 |
concepts = separate_concepts(concept_chooser)
|
264 |
results_dfs = []
|
265 |
for concept in concepts:
|
|
|
269 |
WHERE {{
|
270 |
?author a <urn:acmcmc:unis:Author> .
|
271 |
?author <urn:acmcmc:unis:name> ?name .
|
272 |
+
?article <urn:acmcmc:unis:written_in_institution> <{institution}> .
|
273 |
?article <urn:acmcmc:unis:has_author> ?author .
|
274 |
?article <urn:acmcmc:unis:related_to_concept> <{concept}> .
|
275 |
}}
|
institutions.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
model/.data-00000-of-00001
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1c911cf8812ae52e3a75dbb51ddf610067a96eb3b807a6f0bd7deb6dfc95ffc
|
3 |
+
size 1411474077
|
model/.index
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 294
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49e9e5e144cbd54aa3a0a2a2e0a77395d682d9850b38ecd925622e386ea25f34
|
3 |
size 294
|
model/model_metadata.ampkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdcc9837fd93c7604c58c02ff89219154fa4129cccae86f4d5995feb32d4726a
|
3 |
+
size 406330271
|