Spaces:
Sleeping
Sleeping
acmc
commited on
Commit
·
36c5b68
1
Parent(s):
cdd672b
new model
Browse files- app.py +57 -43
- institutions.csv +0 -0
- model/.data-00000-of-00001 +2 -2
- model/.index +2 -2
- model/model_metadata.ampkl +2 -2
app.py
CHANGED
@@ -98,7 +98,8 @@ def process_user_input_concept(concept_chooser):
|
|
98 |
]
|
99 |
|
100 |
chosen_concepts = separate_concepts(concept_chooser)
|
101 |
-
|
|
|
102 |
for concept in chosen_concepts:
|
103 |
s = all_ids_institutions[:, 0]
|
104 |
p = np.array(["urn:acmcmc:unis:institution_related_to_concept"] * len(s))
|
@@ -107,29 +108,42 @@ def process_user_input_concept(concept_chooser):
|
|
107 |
array_of_triples = np.array([s, p, o]).T
|
108 |
|
109 |
scores = get_similarities_to_node(array_of_triples, model)
|
110 |
-
all_similarities
|
111 |
|
112 |
# Now, average the similarities
|
113 |
-
scores = np.stack(all_similarities, axis=0)
|
114 |
scores = np.mean(all_similarities, axis=0)
|
115 |
|
116 |
table_df = pd.DataFrame(
|
117 |
{
|
118 |
-
"
|
119 |
-
"similarity": scores.flatten(),
|
120 |
-
"
|
121 |
# "num_articles": all_ids_institutions[:, 2].astype(int),
|
122 |
}
|
123 |
)
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
concept_names = [get_concept_name(concept_uri) for concept_uri in chosen_concepts]
|
127 |
return (
|
128 |
table_df,
|
129 |
gr.update(visible=True),
|
130 |
gr.update(visible=True),
|
131 |
-
gr.update(visible=True),
|
132 |
-
f'Concept names: {", ".join(concept_names)}',
|
133 |
)
|
134 |
|
135 |
|
@@ -137,7 +151,7 @@ def calculate_emdeddings_and_pca(table):
|
|
137 |
gr.Info("Performing PCA and clustering...")
|
138 |
# Perform PCA
|
139 |
embeddings_of_institutions = model.get_embeddings(
|
140 |
-
entities=np.array(table["
|
141 |
)
|
142 |
|
143 |
entity_embeddings_pca = pca(embeddings_of_institutions)
|
@@ -147,9 +161,9 @@ def calculate_emdeddings_and_pca(table):
|
|
147 |
|
148 |
plot_df = pd.DataFrame(
|
149 |
{
|
150 |
-
"
|
151 |
-
"
|
152 |
-
"
|
153 |
}
|
154 |
)
|
155 |
|
@@ -159,16 +173,16 @@ def calculate_emdeddings_and_pca(table):
|
|
159 |
|
160 |
|
161 |
def click_on_institution(table, embeddings_var, evt: gr.SelectData):
|
162 |
-
institution_id = table["
|
163 |
try:
|
164 |
embeddings_df = embeddings_var["embeddings_df"]
|
165 |
plot_df = pd.DataFrame(
|
166 |
{
|
167 |
-
"
|
168 |
-
"
|
169 |
-
"
|
170 |
-
"
|
171 |
-
"
|
172 |
# "num_articles": table["num_articles"].values,
|
173 |
}
|
174 |
)
|
@@ -182,11 +196,11 @@ def click_on_show_plot(table):
|
|
182 |
|
183 |
plot_df = pd.DataFrame(
|
184 |
{
|
185 |
-
"
|
186 |
-
"
|
187 |
-
"
|
188 |
-
"
|
189 |
-
"
|
190 |
# "num_articles": table["num_articles"].values,
|
191 |
}
|
192 |
)
|
@@ -201,17 +215,17 @@ def plot_embeddings(plot_df, institution_id):
|
|
201 |
# fig.title("{} embeddings".format(parameter).capitalize())
|
202 |
ax = sns.scatterplot(
|
203 |
data=plot_df,
|
204 |
-
x="
|
205 |
-
y="
|
206 |
-
hue="
|
207 |
)
|
208 |
|
209 |
-
row_of_institution = plot_df[plot_df["
|
210 |
if not row_of_institution.empty:
|
211 |
ax.text(
|
212 |
-
row_of_institution["
|
213 |
-
row_of_institution["
|
214 |
-
row_of_institution["
|
215 |
horizontalalignment="left",
|
216 |
size="medium",
|
217 |
color="black",
|
@@ -219,20 +233,20 @@ def plot_embeddings(plot_df, institution_id):
|
|
219 |
)
|
220 |
# Also draw a point for the institution
|
221 |
ax.scatter(
|
222 |
-
row_of_institution["
|
223 |
-
row_of_institution["
|
224 |
color="black",
|
225 |
s=100,
|
226 |
marker="x",
|
227 |
)
|
228 |
# texts = []
|
229 |
# for i, point in plot_df.iterrows():
|
230 |
-
# if point["
|
231 |
# texts.append(
|
232 |
# fig.text(
|
233 |
-
# point["
|
234 |
-
# point["
|
235 |
-
# str(point["
|
236 |
# )
|
237 |
# )
|
238 |
# adjust_text(texts)
|
@@ -243,9 +257,9 @@ def get_authors_of_institution(institutions_table, concept_chooser, evt: gr.Sele
|
|
243 |
"""
|
244 |
Get the authors of an institution
|
245 |
"""
|
246 |
-
institution = institutions_table["
|
247 |
number_of_row = evt.index[0]
|
248 |
-
institution = institutions_table["
|
249 |
concepts = separate_concepts(concept_chooser)
|
250 |
results_dfs = []
|
251 |
for concept in concepts:
|
@@ -255,7 +269,7 @@ def get_authors_of_institution(institutions_table, concept_chooser, evt: gr.Sele
|
|
255 |
WHERE {{
|
256 |
?author a <urn:acmcmc:unis:Author> .
|
257 |
?author <urn:acmcmc:unis:name> ?name .
|
258 |
-
?article <urn:acmcmc:unis:written_in_institution> <{
|
259 |
?article <urn:acmcmc:unis:has_author> ?author .
|
260 |
?article <urn:acmcmc:unis:related_to_concept> <{concept}> .
|
261 |
}}
|
@@ -324,8 +338,8 @@ with gr.Blocks(theme=theme) as demo:
|
|
324 |
table,
|
325 |
btn_plot_embeddings,
|
326 |
plot_embeddings_info,
|
327 |
-
concept_name_label,
|
328 |
-
concept_name_label,
|
329 |
],
|
330 |
queue=True,
|
331 |
)
|
|
|
98 |
]
|
99 |
|
100 |
chosen_concepts = separate_concepts(concept_chooser)
|
101 |
+
chosen_concepts_names = [get_concept_name(concept) for concept in chosen_concepts]
|
102 |
+
all_similarities = {}
|
103 |
for concept in chosen_concepts:
|
104 |
s = all_ids_institutions[:, 0]
|
105 |
p = np.array(["urn:acmcmc:unis:institution_related_to_concept"] * len(s))
|
|
|
108 |
array_of_triples = np.array([s, p, o]).T
|
109 |
|
110 |
scores = get_similarities_to_node(array_of_triples, model)
|
111 |
+
all_similarities[concept] = scores
|
112 |
|
113 |
# Now, average the similarities
|
114 |
+
scores = np.stack(list(all_similarities.values()), axis=0)
|
115 |
scores = np.mean(all_similarities, axis=0)
|
116 |
|
117 |
table_df = pd.DataFrame(
|
118 |
{
|
119 |
+
"Institution": s,
|
120 |
+
"Mean similarity": scores.flatten(),
|
121 |
+
"Institution name": all_ids_institutions[:, 1],
|
122 |
# "num_articles": all_ids_institutions[:, 2].astype(int),
|
123 |
}
|
124 |
)
|
125 |
+
|
126 |
+
# Add the individual similarities
|
127 |
+
for i, concept in enumerate(chosen_concepts):
|
128 |
+
table_df[f"Similarity to {chosen_concepts_names[i]}"] = all_similarities[concept]
|
129 |
+
|
130 |
+
# Reorder the columns so that the mean similarity is after the individual similarities and before the institution name
|
131 |
+
table_df = table_df[
|
132 |
+
["Institution"]
|
133 |
+
+ [f"Similarity to {chosen_concepts_names[i]}" for i in range(len(chosen_concepts))]
|
134 |
+
+ ["Mean similarity", "Institution name"]
|
135 |
+
]
|
136 |
+
|
137 |
+
# Sort by mean similarity
|
138 |
+
table_df = table_df.sort_values(by=["Mean similarity"], ascending=False)
|
139 |
+
|
140 |
concept_names = [get_concept_name(concept_uri) for concept_uri in chosen_concepts]
|
141 |
return (
|
142 |
table_df,
|
143 |
gr.update(visible=True),
|
144 |
gr.update(visible=True),
|
145 |
+
#gr.update(visible=True),
|
146 |
+
#f'Concept names: {", ".join(concept_names)}',
|
147 |
)
|
148 |
|
149 |
|
|
|
151 |
gr.Info("Performing PCA and clustering...")
|
152 |
# Perform PCA
|
153 |
embeddings_of_institutions = model.get_embeddings(
|
154 |
+
entities=np.array(table["Institution"])
|
155 |
)
|
156 |
|
157 |
entity_embeddings_pca = pca(embeddings_of_institutions)
|
|
|
161 |
|
162 |
plot_df = pd.DataFrame(
|
163 |
{
|
164 |
+
"Embedding (coord 1)": entity_embeddings_pca[:, 0],
|
165 |
+
"Embedding (coord 2)": entity_embeddings_pca[:, 1],
|
166 |
+
"Cluster": "Cluster" + pd.Series(clusters).astype(str),
|
167 |
}
|
168 |
)
|
169 |
|
|
|
173 |
|
174 |
|
175 |
def click_on_institution(table, embeddings_var, evt: gr.SelectData):
|
176 |
+
institution_id = table["Institution"][evt.index[0]]
|
177 |
try:
|
178 |
embeddings_df = embeddings_var["embeddings_df"]
|
179 |
plot_df = pd.DataFrame(
|
180 |
{
|
181 |
+
"Institution": table["Institution"].values,
|
182 |
+
"Institution name": table["Institution name"].values,
|
183 |
+
"Embedding (coord 1)": embeddings_df["Embedding (coord 1)"].values,
|
184 |
+
"Embedding (coord 2)": embeddings_df["Embedding (coord 2)"].values,
|
185 |
+
"Cluster": embeddings_df["Cluster"].values,
|
186 |
# "num_articles": table["num_articles"].values,
|
187 |
}
|
188 |
)
|
|
|
196 |
|
197 |
plot_df = pd.DataFrame(
|
198 |
{
|
199 |
+
"Institution": table["Institution"].values,
|
200 |
+
"Institution_name": table["Institution Name"].values,
|
201 |
+
"Embedding (coord 1)": embeddings_df["Embedding (coord 1)"].values,
|
202 |
+
"Embedding (coord 2)": embeddings_df["Embedding (coord 2)"].values,
|
203 |
+
"Cluster": embeddings_df["Cluster"].values,
|
204 |
# "num_articles": table["num_articles"].values,
|
205 |
}
|
206 |
)
|
|
|
215 |
# fig.title("{} embeddings".format(parameter).capitalize())
|
216 |
ax = sns.scatterplot(
|
217 |
data=plot_df,
|
218 |
+
x="Embedding (coord 1)",
|
219 |
+
y="Embedding (coord 2)",
|
220 |
+
hue="Cluster",
|
221 |
)
|
222 |
|
223 |
+
row_of_institution = plot_df[plot_df["Institution"] == institution_id]
|
224 |
if not row_of_institution.empty:
|
225 |
ax.text(
|
226 |
+
row_of_institution["Embedding (coord 1)"],
|
227 |
+
row_of_institution["Embedding (coord 2)"],
|
228 |
+
row_of_institution["Institution name"].values[0],
|
229 |
horizontalalignment="left",
|
230 |
size="medium",
|
231 |
color="black",
|
|
|
233 |
)
|
234 |
# Also draw a point for the institution
|
235 |
ax.scatter(
|
236 |
+
row_of_institution["Embedding (coord 1)"],
|
237 |
+
row_of_institution["Embedding (coord 2)"],
|
238 |
color="black",
|
239 |
s=100,
|
240 |
marker="x",
|
241 |
)
|
242 |
# texts = []
|
243 |
# for i, point in plot_df.iterrows():
|
244 |
+
# if point["Institution"] == institution_id:
|
245 |
# texts.append(
|
246 |
# fig.text(
|
247 |
+
# point["Embedding (coord 1)"] + 0.02,
|
248 |
+
# point["Embedding (coord 2)"] + 0.01,
|
249 |
+
# str(point["Institution name"]),
|
250 |
# )
|
251 |
# )
|
252 |
# adjust_text(texts)
|
|
|
257 |
"""
|
258 |
Get the authors of an institution
|
259 |
"""
|
260 |
+
institution = institutions_table["Institution"][0]
|
261 |
number_of_row = evt.index[0]
|
262 |
+
institution = institutions_table["Institution"][number_of_row]
|
263 |
concepts = separate_concepts(concept_chooser)
|
264 |
results_dfs = []
|
265 |
for concept in concepts:
|
|
|
269 |
WHERE {{
|
270 |
?author a <urn:acmcmc:unis:Author> .
|
271 |
?author <urn:acmcmc:unis:name> ?name .
|
272 |
+
?article <urn:acmcmc:unis:written_in_institution> <{Institution}> .
|
273 |
?article <urn:acmcmc:unis:has_author> ?author .
|
274 |
?article <urn:acmcmc:unis:related_to_concept> <{concept}> .
|
275 |
}}
|
|
|
338 |
table,
|
339 |
btn_plot_embeddings,
|
340 |
plot_embeddings_info,
|
341 |
+
#concept_name_label,
|
342 |
+
#concept_name_label,
|
343 |
],
|
344 |
queue=True,
|
345 |
)
|
institutions.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
model/.data-00000-of-00001
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa8f3d8bd8f7a741cfe1ef560e5d2f894314342b51ec9a60844d5fc796b8e0c5
|
3 |
+
size 2350332477
|
model/.index
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:364d14e1bb0830e861ef9c87ee188e8b00f90eea93ea07f828d69c3daa0a4139
|
3 |
+
size 294
|
model/model_metadata.ampkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95e4a9f0906a1e60acbe7771e223dae8fa88859afb65066cef0541c1cbc78378
|
3 |
+
size 676909665
|