|
import math |
|
import os |
|
from io import BytesIO |
|
import gradio as gr |
|
import cv2 |
|
import requests |
|
from pydub import AudioSegment |
|
from faster_whisper import WhisperModel |
|
|
|
theme = gr.themes.Base( |
|
primary_hue="cyan", |
|
secondary_hue="blue", |
|
neutral_hue="slate", |
|
) |
|
|
|
model = WhisperModel("small", device="cpu", compute_type="int8") |
|
|
|
API_KEY = os.getenv("API_KEY") |
|
|
|
FACE_API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection" |
|
TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions" |
|
headers = {"Authorization": "Bearer " + API_KEY + ""} |
|
|
|
result = [] |
|
|
|
|
|
def extract_frames(video_path): |
|
cap = cv2.VideoCapture(video_path) |
|
fps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
interval = fps |
|
|
|
images = [] |
|
|
|
for i in range(0, total_frames, interval): |
|
cap.set(cv2.CAP_PROP_POS_FRAMES, i) |
|
ret, frame = cap.read() |
|
if ret: |
|
_, img_encoded = cv2.imencode('.jpg', frame) |
|
img_bytes = img_encoded.tobytes() |
|
|
|
response = requests.post(FACE_API_URL, headers=headers, data=img_bytes) |
|
temp = {item['label']: item['score'] for item in response.json()} |
|
result.append(temp) |
|
|
|
images.append((cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), f"Sentiments: {temp}")) |
|
|
|
print("Frame extraction completed.") |
|
|
|
cap.release() |
|
return images, result |
|
|
|
|
|
def analyze_sentiment(text): |
|
response = requests.post(TEXT_API_URL, headers=headers, json=text) |
|
sentiment_list = response.json()[0] |
|
sentiment_results = {results['label']: results['score'] for results in sentiment_list} |
|
return sentiment_results |
|
|
|
|
|
def video_to_audio(input_video): |
|
cap = cv2.VideoCapture(input_video) |
|
fps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
audio = AudioSegment.from_file(input_video) |
|
audio_binary = audio.export(format="wav").read() |
|
audio_bytesio = BytesIO(audio_binary) |
|
|
|
segments, info = model.transcribe(audio_bytesio, beam_size=5) |
|
|
|
print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) |
|
|
|
frames_images, frames_sentiments = extract_frames(input_video) |
|
|
|
transcript = '' |
|
audio_divide_sentiment = '' |
|
video_sentiment_markdown = '' |
|
video_sentiment_final = [] |
|
final_output = [] |
|
|
|
for segment in segments: |
|
transcript = transcript + segment.text + " " |
|
transcript_segment_sentiment = analyze_sentiment(segment.text) |
|
audio_divide_sentiment += "[%.2fs -> %.2fs] %s : %s`\`" % (segment.start, segment.end, segment.text, transcript_segment_sentiment) |
|
|
|
emotion_totals = { |
|
'admiration': 0.0, |
|
'amusement': 0.0, |
|
'angry': 0.0, |
|
'annoyance': 0.0, |
|
'approval': 0.0, |
|
'caring': 0.0, |
|
'confusion': 0.0, |
|
'curiosity': 0.0, |
|
'desire': 0.0, |
|
'disappointment': 0.0, |
|
'disapproval': 0.0, |
|
'disgust': 0.0, |
|
'embarrassment': 0.0, |
|
'excitement': 0.0, |
|
'fear': 0.0, |
|
'gratitude': 0.0, |
|
'grief': 0.0, |
|
'happy': 0.0, |
|
'love': 0.0, |
|
'nervousness': 0.0, |
|
'optimism': 0.0, |
|
'pride': 0.0, |
|
'realization': 0.0, |
|
'relief': 0.0, |
|
'remorse': 0.0, |
|
'sad': 0.0, |
|
'surprise': 0.0, |
|
'neutral': 0.0 |
|
} |
|
|
|
counter = 0 |
|
for i in range(math.ceil(segment.start), math.floor(segment.end)): |
|
for emotion in frames_sentiments[i].keys(): |
|
emotion_totals[emotion] += frames_sentiments[i].get(emotion) |
|
counter += 1 |
|
|
|
for emotion in emotion_totals: |
|
emotion_totals[emotion] /= counter |
|
|
|
video_sentiment_final.append(emotion_totals) |
|
|
|
video_segment_sentiment = {key: value for key, value in emotion_totals.items() if value != 0.0} |
|
|
|
video_sentiment_markdown += f"Frame {fps*math.ceil(segment.start)} - Frame {fps*math.floor(segment.end)} : {video_segment_sentiment}`\`" |
|
|
|
segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment, video_segment_sentiment)} |
|
final_output.append(segment_finals) |
|
|
|
total_transcript_sentiment = {key: value for key, value in analyze_sentiment(transcript).items() if value >= 0.01} |
|
|
|
emotion_finals = { |
|
'admiration': 0.0, |
|
'amusement': 0.0, |
|
'angry': 0.0, |
|
'annoyance': 0.0, |
|
'approval': 0.0, |
|
'caring': 0.0, |
|
'confusion': 0.0, |
|
'curiosity': 0.0, |
|
'desire': 0.0, |
|
'disappointment': 0.0, |
|
'disapproval': 0.0, |
|
'disgust': 0.0, |
|
'embarrassment': 0.0, |
|
'excitement': 0.0, |
|
'fear': 0.0, |
|
'gratitude': 0.0, |
|
'grief': 0.0, |
|
'happy': 0.0, |
|
'love': 0.0, |
|
'nervousness': 0.0, |
|
'optimism': 0.0, |
|
'pride': 0.0, |
|
'realization': 0.0, |
|
'relief': 0.0, |
|
'remorse': 0.0, |
|
'sad': 0.0, |
|
'surprise': 0.0, |
|
'neutral': 0.0 |
|
} |
|
|
|
for i in range(0, video_sentiment_final.__len__()-1): |
|
for emotion in video_sentiment_final[i].keys(): |
|
emotion_finals[emotion] += video_sentiment_final[i].get(emotion) |
|
|
|
for emotion in emotion_finals: |
|
emotion_finals[emotion] /= video_sentiment_final.__len__() |
|
|
|
emotion_finals = {key: value for key, value in emotion_finals.items() if value != 0.0} |
|
|
|
print("Processing Completed!!") |
|
|
|
return str(final_output), frames_images, total_transcript_sentiment, audio_divide_sentiment, video_sentiment_markdown, emotion_finals |
|
|
|
|
|
with gr.Blocks(theme=theme, css=".gradio-container { background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}") as Video: |
|
with gr.Column(): |
|
gr.Markdown("""# Cross Model Machine Learning Model""") |
|
with gr.Row(): |
|
gr.Markdown(""" |
|
### π€ A cross-model ML model for video processing in healthcare sentiment analysis involves combining different machine learning models to analyze sentiments expressed in healthcare-related videos. |
|
- Facial Expression Recognition Model [Google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) ππ’π° |
|
- Speech Recognition Model [OpenAI/Whisper](https://github.com/openai/whisper) π£οΈπ€ |
|
- Text Analysis Model [RoBERTa-base-go-emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) ππ |
|
- Contextual Understanding Model (Sentiment Analysis) ππ |
|
""") |
|
gr.Markdown("""### By combining the outputs of these models, the cross-model approach aims to capture a more comprehensive view of the sentiment within the healthcare-related video. This way, healthcare providers can gain insights into patient experiences and emotions, facilitating better understanding and improvements in healthcare services. π©ββοΈππ¨ββοΈ """) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_video = gr.Video(sources=["upload", "webcam"]) |
|
button = gr.Button("Process", variant="primary") |
|
gr.Examples(inputs=input_video, examples=[os.path.join(os.path.dirname(__file__), "test_video_1.mp4")]) |
|
with gr.Row(): |
|
overall_score = gr.Label(label="Overall Score") |
|
video_sentiment_final = gr.Label(label="Video Sentiment Score") |
|
|
|
with gr.Column(): |
|
frames_gallery = gr.Gallery(label="Video Frames", show_label=True, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto") |
|
with gr.Accordion(label="JSON detailed Responses", open=False): |
|
json_output = gr.Textbox(label="JSON Output", info="Overall scores of the above video in segments.", show_label=True, lines=5, show_copy_button=True, interactive=False) |
|
audio_sentiment = gr.Textbox(label="Audio Sentiments", info="Outputs of Audio Processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False) |
|
video_sentiment_markdown = gr.Textbox(label="Video Sentiments", info="Outputs of Video Frames processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False) |
|
|
|
button.click( |
|
fn=video_to_audio, |
|
inputs=input_video, |
|
outputs=[json_output, frames_gallery, overall_score, audio_sentiment, video_sentiment_markdown, video_sentiment_final] |
|
) |
|
|
|
Video.launch() |