Upload 3 files
Browse files- .gitattributes +1 -0
- app.py +216 -0
- requirements.txt +3 -0
- test_video_1.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
test_video_1.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
from io import BytesIO
|
4 |
+
import gradio as gr
|
5 |
+
import cv2
|
6 |
+
import requests
|
7 |
+
from pydub import AudioSegment
|
8 |
+
from faster_whisper import WhisperModel
|
9 |
+
|
10 |
+
theme = gr.themes.Base(
|
11 |
+
primary_hue="cyan",
|
12 |
+
secondary_hue="blue",
|
13 |
+
neutral_hue="slate",
|
14 |
+
)
|
15 |
+
|
16 |
+
model = WhisperModel("small", device="cpu", compute_type="int8")
|
17 |
+
|
18 |
+
API_KEY = os.getenv("API_KEY")
|
19 |
+
|
20 |
+
FACE_API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection"
|
21 |
+
TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions"
|
22 |
+
headers = {"Authorization": "Bearer " + API_KEY + ""}
|
23 |
+
|
24 |
+
result = []
|
25 |
+
|
26 |
+
|
27 |
+
def extract_frames(video_path):
|
28 |
+
cap = cv2.VideoCapture(video_path)
|
29 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
30 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
31 |
+
interval = fps
|
32 |
+
|
33 |
+
images = []
|
34 |
+
|
35 |
+
for i in range(0, total_frames, interval):
|
36 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
37 |
+
ret, frame = cap.read()
|
38 |
+
if ret:
|
39 |
+
_, img_encoded = cv2.imencode('.jpg', frame)
|
40 |
+
img_bytes = img_encoded.tobytes()
|
41 |
+
|
42 |
+
response = requests.post(FACE_API_URL, headers=headers, data=img_bytes)
|
43 |
+
temp = {item['label']: item['score'] for item in response.json()}
|
44 |
+
result.append(temp)
|
45 |
+
|
46 |
+
images.append((cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), f"Sentiments: {temp}"))
|
47 |
+
|
48 |
+
print("Frame extraction completed.")
|
49 |
+
|
50 |
+
cap.release()
|
51 |
+
return images, result
|
52 |
+
|
53 |
+
|
54 |
+
def analyze_sentiment(text):
|
55 |
+
response = requests.post(TEXT_API_URL, headers=headers, json=text)
|
56 |
+
sentiment_list = response.json()[0]
|
57 |
+
sentiment_results = {results['label']: results['score'] for results in sentiment_list}
|
58 |
+
return sentiment_results
|
59 |
+
|
60 |
+
|
61 |
+
def video_to_audio(input_video):
|
62 |
+
cap = cv2.VideoCapture(input_video)
|
63 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
64 |
+
audio = AudioSegment.from_file(input_video)
|
65 |
+
audio_binary = audio.export(format="wav").read()
|
66 |
+
audio_bytesio = BytesIO(audio_binary)
|
67 |
+
|
68 |
+
segments, info = model.transcribe(audio_bytesio, beam_size=5)
|
69 |
+
|
70 |
+
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
|
71 |
+
|
72 |
+
frames_images, frames_sentiments = extract_frames(input_video)
|
73 |
+
|
74 |
+
transcript = ''
|
75 |
+
audio_divide_sentiment = ''
|
76 |
+
video_sentiment_markdown = ''
|
77 |
+
video_sentiment_final = []
|
78 |
+
final_output = []
|
79 |
+
|
80 |
+
for segment in segments:
|
81 |
+
transcript = transcript + segment.text + " "
|
82 |
+
transcript_segment_sentiment = analyze_sentiment(segment.text)
|
83 |
+
audio_divide_sentiment += "[%.2fs -> %.2fs] %s : %s`\`" % (segment.start, segment.end, segment.text, transcript_segment_sentiment)
|
84 |
+
|
85 |
+
emotion_totals = {
|
86 |
+
'admiration': 0.0,
|
87 |
+
'amusement': 0.0,
|
88 |
+
'angry': 0.0,
|
89 |
+
'annoyance': 0.0,
|
90 |
+
'approval': 0.0,
|
91 |
+
'caring': 0.0,
|
92 |
+
'confusion': 0.0,
|
93 |
+
'curiosity': 0.0,
|
94 |
+
'desire': 0.0,
|
95 |
+
'disappointment': 0.0,
|
96 |
+
'disapproval': 0.0,
|
97 |
+
'disgust': 0.0,
|
98 |
+
'embarrassment': 0.0,
|
99 |
+
'excitement': 0.0,
|
100 |
+
'fear': 0.0,
|
101 |
+
'gratitude': 0.0,
|
102 |
+
'grief': 0.0,
|
103 |
+
'happy': 0.0,
|
104 |
+
'love': 0.0,
|
105 |
+
'nervousness': 0.0,
|
106 |
+
'optimism': 0.0,
|
107 |
+
'pride': 0.0,
|
108 |
+
'realization': 0.0,
|
109 |
+
'relief': 0.0,
|
110 |
+
'remorse': 0.0,
|
111 |
+
'sad': 0.0,
|
112 |
+
'surprise': 0.0,
|
113 |
+
'neutral': 0.0
|
114 |
+
}
|
115 |
+
|
116 |
+
counter = 0
|
117 |
+
for i in range(math.ceil(segment.start), math.floor(segment.end)):
|
118 |
+
for emotion in frames_sentiments[i].keys():
|
119 |
+
emotion_totals[emotion] += frames_sentiments[i].get(emotion)
|
120 |
+
counter += 1
|
121 |
+
|
122 |
+
for emotion in emotion_totals:
|
123 |
+
emotion_totals[emotion] /= counter
|
124 |
+
|
125 |
+
video_sentiment_final.append(emotion_totals)
|
126 |
+
|
127 |
+
video_segment_sentiment = {key: value for key, value in emotion_totals.items() if value != 0.0}
|
128 |
+
|
129 |
+
video_sentiment_markdown += f"Frame {fps*math.ceil(segment.start)} - Frame {fps*math.floor(segment.end)} : {video_segment_sentiment}`\`"
|
130 |
+
|
131 |
+
segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment, video_segment_sentiment)}
|
132 |
+
final_output.append(segment_finals)
|
133 |
+
|
134 |
+
total_transcript_sentiment = {key: value for key, value in analyze_sentiment(transcript).items() if value >= 0.01}
|
135 |
+
|
136 |
+
emotion_finals = {
|
137 |
+
'admiration': 0.0,
|
138 |
+
'amusement': 0.0,
|
139 |
+
'angry': 0.0,
|
140 |
+
'annoyance': 0.0,
|
141 |
+
'approval': 0.0,
|
142 |
+
'caring': 0.0,
|
143 |
+
'confusion': 0.0,
|
144 |
+
'curiosity': 0.0,
|
145 |
+
'desire': 0.0,
|
146 |
+
'disappointment': 0.0,
|
147 |
+
'disapproval': 0.0,
|
148 |
+
'disgust': 0.0,
|
149 |
+
'embarrassment': 0.0,
|
150 |
+
'excitement': 0.0,
|
151 |
+
'fear': 0.0,
|
152 |
+
'gratitude': 0.0,
|
153 |
+
'grief': 0.0,
|
154 |
+
'happy': 0.0,
|
155 |
+
'love': 0.0,
|
156 |
+
'nervousness': 0.0,
|
157 |
+
'optimism': 0.0,
|
158 |
+
'pride': 0.0,
|
159 |
+
'realization': 0.0,
|
160 |
+
'relief': 0.0,
|
161 |
+
'remorse': 0.0,
|
162 |
+
'sad': 0.0,
|
163 |
+
'surprise': 0.0,
|
164 |
+
'neutral': 0.0
|
165 |
+
}
|
166 |
+
|
167 |
+
for i in range(0, video_sentiment_final.__len__()-1):
|
168 |
+
for emotion in video_sentiment_final[i].keys():
|
169 |
+
emotion_finals[emotion] += video_sentiment_final[i].get(emotion)
|
170 |
+
|
171 |
+
for emotion in emotion_finals:
|
172 |
+
emotion_finals[emotion] /= video_sentiment_final.__len__()
|
173 |
+
|
174 |
+
emotion_finals = {key: value for key, value in emotion_finals.items() if value != 0.0}
|
175 |
+
|
176 |
+
print("Processing Completed!!")
|
177 |
+
|
178 |
+
return str(final_output), frames_images, total_transcript_sentiment, audio_divide_sentiment, video_sentiment_markdown, emotion_finals
|
179 |
+
|
180 |
+
|
181 |
+
with gr.Blocks(theme=theme, css=".gradio-container { background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}") as Video:
|
182 |
+
with gr.Column():
|
183 |
+
gr.Markdown("""# Cross Model Machine Learning Model""")
|
184 |
+
with gr.Row():
|
185 |
+
gr.Markdown("""
|
186 |
+
### π€ A cross-model ML model for video processing in healthcare sentiment analysis involves combining different machine learning models to analyze sentiments expressed in healthcare-related videos.
|
187 |
+
- Facial Expression Recognition Model [Google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) ππ’π°
|
188 |
+
- Speech Recognition Model [OpenAI/Whisper](https://github.com/openai/whisper) π£οΈπ€
|
189 |
+
- Text Analysis Model [RoBERTa-base-go-emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) ππ
|
190 |
+
- Contextual Understanding Model (Sentiment Analysis) ππ
|
191 |
+
""")
|
192 |
+
gr.Markdown("""### By combining the outputs of these models, the cross-model approach aims to capture a more comprehensive view of the sentiment within the healthcare-related video. This way, healthcare providers can gain insights into patient experiences and emotions, facilitating better understanding and improvements in healthcare services. π©ββοΈππ¨ββοΈ """)
|
193 |
+
|
194 |
+
with gr.Row():
|
195 |
+
with gr.Column():
|
196 |
+
input_video = gr.Video(sources=["upload", "webcam"])
|
197 |
+
button = gr.Button("Process", variant="primary")
|
198 |
+
gr.Examples(inputs=input_video, examples=[os.path.join(os.path.dirname(__file__), "test_video_1.mp4")])
|
199 |
+
with gr.Row():
|
200 |
+
overall_score = gr.Label(label="Overall Score")
|
201 |
+
video_sentiment_final = gr.Label(label="Video Sentiment Score")
|
202 |
+
|
203 |
+
with gr.Column():
|
204 |
+
frames_gallery = gr.Gallery(label="Video Frames", show_label=True, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto")
|
205 |
+
with gr.Accordion(label="JSON detailed Responses", open=False):
|
206 |
+
json_output = gr.Textbox(label="JSON Output", info="Overall scores of the above video in segments.", show_label=True, lines=5, show_copy_button=True, interactive=False)
|
207 |
+
audio_sentiment = gr.Textbox(label="Audio Sentiments", info="Outputs of Audio Processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False)
|
208 |
+
video_sentiment_markdown = gr.Textbox(label="Video Sentiments", info="Outputs of Video Frames processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False)
|
209 |
+
|
210 |
+
button.click(
|
211 |
+
fn=video_to_audio,
|
212 |
+
inputs=input_video,
|
213 |
+
outputs=[json_output, frames_gallery, overall_score, audio_sentiment, video_sentiment_markdown, video_sentiment_final]
|
214 |
+
)
|
215 |
+
|
216 |
+
Video.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
pydub
|
3 |
+
faster_whisper
|
test_video_1.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9aea0f64701df624fdab94c311a38b51bbefe1dea785f4ff079c1d755850233
|
3 |
+
size 10982596
|