abhicodes's picture
Upload 3 files
8c9e75a verified
raw
history blame
8.92 kB
import math
import os
from io import BytesIO
import gradio as gr
import cv2
import requests
from pydub import AudioSegment
from faster_whisper import WhisperModel
theme = gr.themes.Base(
primary_hue="cyan",
secondary_hue="blue",
neutral_hue="slate",
)
model = WhisperModel("small", device="cpu", compute_type="int8")
API_KEY = os.getenv("API_KEY")
FACE_API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection"
TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions"
headers = {"Authorization": "Bearer " + API_KEY + ""}
result = []
def extract_frames(video_path):
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
interval = fps
images = []
for i in range(0, total_frames, interval):
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if ret:
_, img_encoded = cv2.imencode('.jpg', frame)
img_bytes = img_encoded.tobytes()
response = requests.post(FACE_API_URL, headers=headers, data=img_bytes)
temp = {item['label']: item['score'] for item in response.json()}
result.append(temp)
images.append((cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), f"Sentiments: {temp}"))
print("Frame extraction completed.")
cap.release()
return images, result
def analyze_sentiment(text):
response = requests.post(TEXT_API_URL, headers=headers, json=text)
sentiment_list = response.json()[0]
sentiment_results = {results['label']: results['score'] for results in sentiment_list}
return sentiment_results
def video_to_audio(input_video):
cap = cv2.VideoCapture(input_video)
fps = int(cap.get(cv2.CAP_PROP_FPS))
audio = AudioSegment.from_file(input_video)
audio_binary = audio.export(format="wav").read()
audio_bytesio = BytesIO(audio_binary)
segments, info = model.transcribe(audio_bytesio, beam_size=5)
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
frames_images, frames_sentiments = extract_frames(input_video)
transcript = ''
audio_divide_sentiment = ''
video_sentiment_markdown = ''
video_sentiment_final = []
final_output = []
for segment in segments:
transcript = transcript + segment.text + " "
transcript_segment_sentiment = analyze_sentiment(segment.text)
audio_divide_sentiment += "[%.2fs -> %.2fs] %s : %s`\`" % (segment.start, segment.end, segment.text, transcript_segment_sentiment)
emotion_totals = {
'admiration': 0.0,
'amusement': 0.0,
'angry': 0.0,
'annoyance': 0.0,
'approval': 0.0,
'caring': 0.0,
'confusion': 0.0,
'curiosity': 0.0,
'desire': 0.0,
'disappointment': 0.0,
'disapproval': 0.0,
'disgust': 0.0,
'embarrassment': 0.0,
'excitement': 0.0,
'fear': 0.0,
'gratitude': 0.0,
'grief': 0.0,
'happy': 0.0,
'love': 0.0,
'nervousness': 0.0,
'optimism': 0.0,
'pride': 0.0,
'realization': 0.0,
'relief': 0.0,
'remorse': 0.0,
'sad': 0.0,
'surprise': 0.0,
'neutral': 0.0
}
counter = 0
for i in range(math.ceil(segment.start), math.floor(segment.end)):
for emotion in frames_sentiments[i].keys():
emotion_totals[emotion] += frames_sentiments[i].get(emotion)
counter += 1
for emotion in emotion_totals:
emotion_totals[emotion] /= counter
video_sentiment_final.append(emotion_totals)
video_segment_sentiment = {key: value for key, value in emotion_totals.items() if value != 0.0}
video_sentiment_markdown += f"Frame {fps*math.ceil(segment.start)} - Frame {fps*math.floor(segment.end)} : {video_segment_sentiment}`\`"
segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment, video_segment_sentiment)}
final_output.append(segment_finals)
total_transcript_sentiment = {key: value for key, value in analyze_sentiment(transcript).items() if value >= 0.01}
emotion_finals = {
'admiration': 0.0,
'amusement': 0.0,
'angry': 0.0,
'annoyance': 0.0,
'approval': 0.0,
'caring': 0.0,
'confusion': 0.0,
'curiosity': 0.0,
'desire': 0.0,
'disappointment': 0.0,
'disapproval': 0.0,
'disgust': 0.0,
'embarrassment': 0.0,
'excitement': 0.0,
'fear': 0.0,
'gratitude': 0.0,
'grief': 0.0,
'happy': 0.0,
'love': 0.0,
'nervousness': 0.0,
'optimism': 0.0,
'pride': 0.0,
'realization': 0.0,
'relief': 0.0,
'remorse': 0.0,
'sad': 0.0,
'surprise': 0.0,
'neutral': 0.0
}
for i in range(0, video_sentiment_final.__len__()-1):
for emotion in video_sentiment_final[i].keys():
emotion_finals[emotion] += video_sentiment_final[i].get(emotion)
for emotion in emotion_finals:
emotion_finals[emotion] /= video_sentiment_final.__len__()
emotion_finals = {key: value for key, value in emotion_finals.items() if value != 0.0}
print("Processing Completed!!")
return str(final_output), frames_images, total_transcript_sentiment, audio_divide_sentiment, video_sentiment_markdown, emotion_finals
with gr.Blocks(theme=theme, css=".gradio-container { background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}") as Video:
with gr.Column():
gr.Markdown("""# Cross Model Machine Learning Model""")
with gr.Row():
gr.Markdown("""
### πŸ€– A cross-model ML model for video processing in healthcare sentiment analysis involves combining different machine learning models to analyze sentiments expressed in healthcare-related videos.
- Facial Expression Recognition Model [Google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) 😊😒😰
- Speech Recognition Model [OpenAI/Whisper](https://github.com/openai/whisper) πŸ—£οΈπŸŽ€
- Text Analysis Model [RoBERTa-base-go-emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) πŸ“πŸ“œ
- Contextual Understanding Model (Sentiment Analysis) πŸ”„πŸŒ
""")
gr.Markdown("""### By combining the outputs of these models, the cross-model approach aims to capture a more comprehensive view of the sentiment within the healthcare-related video. This way, healthcare providers can gain insights into patient experiences and emotions, facilitating better understanding and improvements in healthcare services. πŸ‘©β€βš•οΈπŸ“ˆπŸ‘¨β€βš•οΈ """)
with gr.Row():
with gr.Column():
input_video = gr.Video(sources=["upload", "webcam"])
button = gr.Button("Process", variant="primary")
gr.Examples(inputs=input_video, examples=[os.path.join(os.path.dirname(__file__), "test_video_1.mp4")])
with gr.Row():
overall_score = gr.Label(label="Overall Score")
video_sentiment_final = gr.Label(label="Video Sentiment Score")
with gr.Column():
frames_gallery = gr.Gallery(label="Video Frames", show_label=True, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto")
with gr.Accordion(label="JSON detailed Responses", open=False):
json_output = gr.Textbox(label="JSON Output", info="Overall scores of the above video in segments.", show_label=True, lines=5, show_copy_button=True, interactive=False)
audio_sentiment = gr.Textbox(label="Audio Sentiments", info="Outputs of Audio Processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False)
video_sentiment_markdown = gr.Textbox(label="Video Sentiments", info="Outputs of Video Frames processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False)
button.click(
fn=video_to_audio,
inputs=input_video,
outputs=[json_output, frames_gallery, overall_score, audio_sentiment, video_sentiment_markdown, video_sentiment_final]
)
Video.launch()