File size: 8,918 Bytes
8c9e75a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import math
import os
from io import BytesIO
import gradio as gr
import cv2
import requests
from pydub import AudioSegment
from faster_whisper import WhisperModel

theme = gr.themes.Base(
    primary_hue="cyan",
    secondary_hue="blue",
    neutral_hue="slate",
)

model = WhisperModel("small", device="cpu", compute_type="int8")

API_KEY = os.getenv("API_KEY")

FACE_API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection"
TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions"
headers = {"Authorization": "Bearer " + API_KEY + ""}

result = []


def extract_frames(video_path):
    cap = cv2.VideoCapture(video_path)
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    interval = fps

    images = []

    for i in range(0, total_frames, interval):
        cap.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = cap.read()
        if ret:
            _, img_encoded = cv2.imencode('.jpg', frame)
            img_bytes = img_encoded.tobytes()

            response = requests.post(FACE_API_URL, headers=headers, data=img_bytes)
            temp = {item['label']: item['score'] for item in response.json()}
            result.append(temp)

            images.append((cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), f"Sentiments: {temp}"))

    print("Frame extraction completed.")

    cap.release()
    return images, result


def analyze_sentiment(text):
    response = requests.post(TEXT_API_URL, headers=headers, json=text)
    sentiment_list = response.json()[0]
    sentiment_results = {results['label']: results['score'] for results in sentiment_list}
    return sentiment_results


def video_to_audio(input_video):
    cap = cv2.VideoCapture(input_video)
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    audio = AudioSegment.from_file(input_video)
    audio_binary = audio.export(format="wav").read()
    audio_bytesio = BytesIO(audio_binary)

    segments, info = model.transcribe(audio_bytesio, beam_size=5)

    print("Detected language '%s' with probability %f" % (info.language, info.language_probability))

    frames_images, frames_sentiments = extract_frames(input_video)

    transcript = ''
    audio_divide_sentiment = ''
    video_sentiment_markdown = ''
    video_sentiment_final = []
    final_output = []

    for segment in segments:
        transcript = transcript + segment.text + " "
        transcript_segment_sentiment = analyze_sentiment(segment.text)
        audio_divide_sentiment += "[%.2fs -> %.2fs] %s :  %s`\`" % (segment.start, segment.end, segment.text, transcript_segment_sentiment)

        emotion_totals = {
            'admiration': 0.0,
            'amusement': 0.0,
            'angry': 0.0,
            'annoyance': 0.0,
            'approval': 0.0,
            'caring': 0.0,
            'confusion': 0.0,
            'curiosity': 0.0,
            'desire': 0.0,
            'disappointment': 0.0,
            'disapproval': 0.0,
            'disgust': 0.0,
            'embarrassment': 0.0,
            'excitement': 0.0,
            'fear': 0.0,
            'gratitude': 0.0,
            'grief': 0.0,
            'happy': 0.0,
            'love': 0.0,
            'nervousness': 0.0,
            'optimism': 0.0,
            'pride': 0.0,
            'realization': 0.0,
            'relief': 0.0,
            'remorse': 0.0,
            'sad': 0.0,
            'surprise': 0.0,
            'neutral': 0.0
        }

        counter = 0
        for i in range(math.ceil(segment.start), math.floor(segment.end)):
            for emotion in frames_sentiments[i].keys():
                emotion_totals[emotion] += frames_sentiments[i].get(emotion)
            counter += 1

        for emotion in emotion_totals:
            emotion_totals[emotion] /= counter

        video_sentiment_final.append(emotion_totals)

        video_segment_sentiment = {key: value for key, value in emotion_totals.items() if value != 0.0}

        video_sentiment_markdown += f"Frame {fps*math.ceil(segment.start)} - Frame {fps*math.floor(segment.end)} : {video_segment_sentiment}`\`"

        segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment, video_segment_sentiment)}
        final_output.append(segment_finals)

    total_transcript_sentiment = {key: value for key, value in analyze_sentiment(transcript).items() if value >= 0.01}

    emotion_finals = {
        'admiration': 0.0,
        'amusement': 0.0,
        'angry': 0.0,
        'annoyance': 0.0,
        'approval': 0.0,
        'caring': 0.0,
        'confusion': 0.0,
        'curiosity': 0.0,
        'desire': 0.0,
        'disappointment': 0.0,
        'disapproval': 0.0,
        'disgust': 0.0,
        'embarrassment': 0.0,
        'excitement': 0.0,
        'fear': 0.0,
        'gratitude': 0.0,
        'grief': 0.0,
        'happy': 0.0,
        'love': 0.0,
        'nervousness': 0.0,
        'optimism': 0.0,
        'pride': 0.0,
        'realization': 0.0,
        'relief': 0.0,
        'remorse': 0.0,
        'sad': 0.0,
        'surprise': 0.0,
        'neutral': 0.0
    }

    for i in range(0, video_sentiment_final.__len__()-1):
        for emotion in video_sentiment_final[i].keys():
            emotion_finals[emotion] += video_sentiment_final[i].get(emotion)

    for emotion in emotion_finals:
        emotion_finals[emotion] /= video_sentiment_final.__len__()

    emotion_finals = {key: value for key, value in emotion_finals.items() if value != 0.0}

    print("Processing Completed!!")

    return str(final_output), frames_images, total_transcript_sentiment, audio_divide_sentiment, video_sentiment_markdown, emotion_finals


with gr.Blocks(theme=theme, css=".gradio-container {  background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}") as Video:
    with gr.Column():
        gr.Markdown("""# Cross Model Machine Learning Model""")
        with gr.Row():
            gr.Markdown("""
                        ### πŸ€– A cross-model ML model for video processing in healthcare sentiment analysis involves combining different machine learning models to analyze sentiments expressed in healthcare-related videos.
                        - Facial Expression Recognition Model [Google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) 😊😒😰
                        - Speech Recognition Model [OpenAI/Whisper](https://github.com/openai/whisper) πŸ—£οΈπŸŽ€ 
                        - Text Analysis Model [RoBERTa-base-go-emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) πŸ“πŸ“œ
                        - Contextual Understanding Model (Sentiment Analysis) πŸ”„πŸŒ
                        """)
            gr.Markdown("""### By combining the outputs of these models, the cross-model approach aims to capture a more comprehensive view of the sentiment within the healthcare-related video. This way, healthcare providers can gain insights into patient experiences and emotions, facilitating better understanding and improvements in healthcare services. πŸ‘©β€βš•οΈπŸ“ˆπŸ‘¨β€βš•οΈ """)

        with gr.Row():
            with gr.Column():
                input_video = gr.Video(sources=["upload", "webcam"])
                button = gr.Button("Process", variant="primary")
                gr.Examples(inputs=input_video, examples=[os.path.join(os.path.dirname(__file__), "test_video_1.mp4")])
            with gr.Row():
                overall_score = gr.Label(label="Overall Score")
                video_sentiment_final = gr.Label(label="Video Sentiment Score")

        with gr.Column():
            frames_gallery = gr.Gallery(label="Video Frames", show_label=True, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto")
            with gr.Accordion(label="JSON detailed Responses", open=False):
                json_output = gr.Textbox(label="JSON Output", info="Overall scores of the above video in segments.", show_label=True, lines=5, show_copy_button=True, interactive=False)
                audio_sentiment = gr.Textbox(label="Audio Sentiments", info="Outputs of Audio Processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False)
                video_sentiment_markdown = gr.Textbox(label="Video Sentiments", info="Outputs of Video Frames processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False)

    button.click(
        fn=video_to_audio,
        inputs=input_video,
        outputs=[json_output, frames_gallery, overall_score, audio_sentiment, video_sentiment_markdown, video_sentiment_final]
    )

Video.launch()