Spaces:
Sleeping
Sleeping
File size: 6,448 Bytes
90a5526 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import ee
import geemap
import json
import geopandas as gpd
import streamlit as st
import pandas as pd
from fastkml import kml
import geojson
ee_credentials = os.environ.get("EE")
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(ee_credentials)
ee.Initialize()
def convert_3d_to_2d(geometry):
"""
Recursively convert any 3D coordinates in a geometry to 2D.
"""
if geometry.is_empty:
return geometry
if geometry.geom_type == 'Polygon':
return geojson.Polygon([[(x, y) for x, y, *_ in ring] for ring in geometry.coordinates])
elif geometry.geom_type == 'MultiPolygon':
return geojson.MultiPolygon([
[[(x, y) for x, y, *_ in ring] for ring in poly]
for poly in geometry.coordinates
])
elif geometry.geom_type == 'LineString':
return geojson.LineString([(x, y) for x, y, *_ in geometry.coordinates])
elif geometry.geom_type == 'MultiLineString':
return geojson.MultiLineString([
[(x, y) for x, y, *_ in line]
for line in geometry.coordinates
])
elif geometry.geom_type == 'Point':
x, y, *_ = geometry.coordinates
return geojson.Point((x, y))
elif geometry.geom_type == 'MultiPoint':
return geojson.MultiPoint([(x, y) for x, y, *_ in geometry.coordinates])
return geometry # Return unchanged if not a supported geometry type
def convert_to_2d_geometry(geom): #Handles Polygon Only
if geom is None:
return None
elif geom.has_z:
# Extract exterior coordinates and convert to 2D
exterior_coords = geom.exterior.coords[:] # Get all coordinates of the exterior ring
exterior_coords_2d = [(x, y) for x, y, *_ in exterior_coords] # Keep only the x and y coordinates, ignoring z
# Handle interior rings (holes) if any
interior_coords_2d = []
for interior in geom.interiors:
interior_coords = interior.coords[:]
interior_coords_2d.append([(x, y) for x, y, *_ in interior_coords])
# Create a new Polygon with 2D coordinates
return type(geom)(exterior_coords_2d, interior_coords_2d)
else:
return geom
def kml_to_gdf(kml_file):
try:
gdf = gpd.read_file(kml_file)
for i in range(len(gdf)):
geom = gdf.iloc[i].geometry
new_geom = convert_to_2d_geometry(geom)
gdf.loc[i, 'geometry'] = new_geom
print(gdf.iloc[i].geometry)
print(f"KML file '{kml_file}' successfully read")
except Exception as e:
print(f"Error: {e}")
return gdf
def kml_to_geojson(kml_string):
k = kml.KML()
k.from_string(kml_string.encode('utf-8')) # Convert the string to bytes
features = list(k.features())
geojson_features = []
for feature in features:
geometry_2d = convert_3d_to_2d(feature.geometry)
geojson_features.append(geojson.Feature(geometry=geometry_2d))
geojson_data = geojson.FeatureCollection(geojson_features)
return geojson_data
def geojson_to_ee(geojson_data):
ee_object = ee.FeatureCollection(geojson_data)
return ee_object
def kml_to_gdf(kml_file):
try:
gdf = gpd.read_file(kml_file)
for i in range(len(gdf)):
geom = gdf.iloc[i].geometry
new_geom = convert_to_2d_geometry(geom)
gdf.loc[i, 'geometry'] = new_geom
print(gdf.iloc[i].geometry)
print(f"KML file '{kml_file}' successfully read")
except Exception as e:
print(f"Error: {e}")
return gdf
# put title in center
st.markdown("""
<style>
h1 {
text-align: center;
}
</style>
""", unsafe_allow_html=True)
st.title("Mean NDVI Calculator")
# get the start and end date from the user
col = st.columns(2)
start_date = col[0].date_input("Start Date", value=pd.to_datetime('2021-01-01'))
end_date = col[1].date_input("End Date", value=pd.to_datetime('2021-01-30'))
start_date = start_date.strftime("%Y-%m-%d")
end_date = end_date.strftime("%Y-%m-%d")
max_cloud_cover = st.number_input("Max Cloud Cover", value=20)
# Get the geojson file from the user
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
# Read the KML file
if uploaded_file is None:
file_name = "Bhankhara_Df_11_he_5_2020-21.geojson"
st.write(f"Using default file: {file_name}")
data = gpd.read_file(file_name)
with open(file_name) as f:
str_data = f.read()
else:
st.write(f"Using uploaded file: {uploaded_file.name}")
file_name = uploaded_file.name
bytes_data = uploaded_file.getvalue()
str_data = bytes_data.decode("utf-8")
if file_name.endswith(".geojson"):
geojson_data = json.loads(str_data)
elif file_name.endswith(".kml"):
geojson_data = json.loads(kml_to_gdf(str_data).to_json())
print(geojson_data)
# Read Geojson File
ee_object = geojson_to_ee(geojson_data)
# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterBounds(ee_object).filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_date, end_date)).select(['B4', 'B8'])
# Print Number of Images in collection
# print("Number of images", collection.size().getInfo())
st.write(f"Number of images: {collection.size().getInfo()}")
# Calculate NDVI as Normalized Index
def calculate_ndvi(image):
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
return image.addBands(ndvi)
collection = collection.map(calculate_ndvi)
# Write Zonalstats into csv file
# out_dir = os.path.join("Output")
# out_NDVI_stats = os.path.join(out_dir, "tmp.csv")
# if not os.path.exists(out_dir):
# os.makedirs(out_dir)
geemap.zonal_stats(collection.select(["NDVI"]), ee_object, "tmp.csv", stat_type="mean", scale=10)
# Show the table
df = pd.read_csv("tmp.csv")
df = df.T
df = df.reset_index()
df = df.iloc[:-2]
df['index'] = pd.to_datetime(df['index'].apply(lambda x: x.split('_')[1].split('T')[0])).dt.strftime('%Y-%m-%d')
df.rename(columns={'index': 'Date', 0: 'Mean NDVI'}, inplace=True)
st.write(df)
# plot the time series
st.write("Time Series Plot")
st.line_chart(df.set_index('Date'))
st.write(f"Overall Mean NDVI: {df['Mean NDVI'].mean():.2f}") |