Spaces:
Sleeping
Sleeping
UjjwalKGupta
commited on
Commit
•
90a5526
1
Parent(s):
95324aa
Upload updated_app.py
Browse files- updated_app.py +196 -0
updated_app.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import ee
|
3 |
+
import geemap
|
4 |
+
import json
|
5 |
+
import geopandas as gpd
|
6 |
+
import streamlit as st
|
7 |
+
import pandas as pd
|
8 |
+
from fastkml import kml
|
9 |
+
import geojson
|
10 |
+
|
11 |
+
ee_credentials = os.environ.get("EE")
|
12 |
+
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
13 |
+
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
14 |
+
f.write(ee_credentials)
|
15 |
+
|
16 |
+
ee.Initialize()
|
17 |
+
|
18 |
+
def convert_3d_to_2d(geometry):
|
19 |
+
"""
|
20 |
+
Recursively convert any 3D coordinates in a geometry to 2D.
|
21 |
+
"""
|
22 |
+
if geometry.is_empty:
|
23 |
+
return geometry
|
24 |
+
|
25 |
+
if geometry.geom_type == 'Polygon':
|
26 |
+
return geojson.Polygon([[(x, y) for x, y, *_ in ring] for ring in geometry.coordinates])
|
27 |
+
|
28 |
+
elif geometry.geom_type == 'MultiPolygon':
|
29 |
+
return geojson.MultiPolygon([
|
30 |
+
[[(x, y) for x, y, *_ in ring] for ring in poly]
|
31 |
+
for poly in geometry.coordinates
|
32 |
+
])
|
33 |
+
|
34 |
+
elif geometry.geom_type == 'LineString':
|
35 |
+
return geojson.LineString([(x, y) for x, y, *_ in geometry.coordinates])
|
36 |
+
|
37 |
+
elif geometry.geom_type == 'MultiLineString':
|
38 |
+
return geojson.MultiLineString([
|
39 |
+
[(x, y) for x, y, *_ in line]
|
40 |
+
for line in geometry.coordinates
|
41 |
+
])
|
42 |
+
|
43 |
+
elif geometry.geom_type == 'Point':
|
44 |
+
x, y, *_ = geometry.coordinates
|
45 |
+
return geojson.Point((x, y))
|
46 |
+
|
47 |
+
elif geometry.geom_type == 'MultiPoint':
|
48 |
+
return geojson.MultiPoint([(x, y) for x, y, *_ in geometry.coordinates])
|
49 |
+
|
50 |
+
return geometry # Return unchanged if not a supported geometry type
|
51 |
+
|
52 |
+
def convert_to_2d_geometry(geom): #Handles Polygon Only
|
53 |
+
if geom is None:
|
54 |
+
return None
|
55 |
+
elif geom.has_z:
|
56 |
+
# Extract exterior coordinates and convert to 2D
|
57 |
+
exterior_coords = geom.exterior.coords[:] # Get all coordinates of the exterior ring
|
58 |
+
exterior_coords_2d = [(x, y) for x, y, *_ in exterior_coords] # Keep only the x and y coordinates, ignoring z
|
59 |
+
|
60 |
+
# Handle interior rings (holes) if any
|
61 |
+
interior_coords_2d = []
|
62 |
+
for interior in geom.interiors:
|
63 |
+
interior_coords = interior.coords[:]
|
64 |
+
interior_coords_2d.append([(x, y) for x, y, *_ in interior_coords])
|
65 |
+
|
66 |
+
# Create a new Polygon with 2D coordinates
|
67 |
+
return type(geom)(exterior_coords_2d, interior_coords_2d)
|
68 |
+
else:
|
69 |
+
return geom
|
70 |
+
|
71 |
+
def kml_to_gdf(kml_file):
|
72 |
+
try:
|
73 |
+
gdf = gpd.read_file(kml_file)
|
74 |
+
for i in range(len(gdf)):
|
75 |
+
geom = gdf.iloc[i].geometry
|
76 |
+
new_geom = convert_to_2d_geometry(geom)
|
77 |
+
gdf.loc[i, 'geometry'] = new_geom
|
78 |
+
print(gdf.iloc[i].geometry)
|
79 |
+
print(f"KML file '{kml_file}' successfully read")
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error: {e}")
|
82 |
+
return gdf
|
83 |
+
|
84 |
+
def kml_to_geojson(kml_string):
|
85 |
+
k = kml.KML()
|
86 |
+
k.from_string(kml_string.encode('utf-8')) # Convert the string to bytes
|
87 |
+
features = list(k.features())
|
88 |
+
|
89 |
+
geojson_features = []
|
90 |
+
for feature in features:
|
91 |
+
geometry_2d = convert_3d_to_2d(feature.geometry)
|
92 |
+
geojson_features.append(geojson.Feature(geometry=geometry_2d))
|
93 |
+
|
94 |
+
geojson_data = geojson.FeatureCollection(geojson_features)
|
95 |
+
return geojson_data
|
96 |
+
|
97 |
+
def geojson_to_ee(geojson_data):
|
98 |
+
ee_object = ee.FeatureCollection(geojson_data)
|
99 |
+
return ee_object
|
100 |
+
|
101 |
+
def kml_to_gdf(kml_file):
|
102 |
+
try:
|
103 |
+
gdf = gpd.read_file(kml_file)
|
104 |
+
for i in range(len(gdf)):
|
105 |
+
geom = gdf.iloc[i].geometry
|
106 |
+
new_geom = convert_to_2d_geometry(geom)
|
107 |
+
gdf.loc[i, 'geometry'] = new_geom
|
108 |
+
print(gdf.iloc[i].geometry)
|
109 |
+
print(f"KML file '{kml_file}' successfully read")
|
110 |
+
except Exception as e:
|
111 |
+
print(f"Error: {e}")
|
112 |
+
return gdf
|
113 |
+
|
114 |
+
# put title in center
|
115 |
+
st.markdown("""
|
116 |
+
<style>
|
117 |
+
h1 {
|
118 |
+
text-align: center;
|
119 |
+
}
|
120 |
+
</style>
|
121 |
+
""", unsafe_allow_html=True)
|
122 |
+
|
123 |
+
st.title("Mean NDVI Calculator")
|
124 |
+
|
125 |
+
# get the start and end date from the user
|
126 |
+
col = st.columns(2)
|
127 |
+
start_date = col[0].date_input("Start Date", value=pd.to_datetime('2021-01-01'))
|
128 |
+
end_date = col[1].date_input("End Date", value=pd.to_datetime('2021-01-30'))
|
129 |
+
start_date = start_date.strftime("%Y-%m-%d")
|
130 |
+
end_date = end_date.strftime("%Y-%m-%d")
|
131 |
+
|
132 |
+
max_cloud_cover = st.number_input("Max Cloud Cover", value=20)
|
133 |
+
|
134 |
+
# Get the geojson file from the user
|
135 |
+
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
|
136 |
+
|
137 |
+
# Read the KML file
|
138 |
+
if uploaded_file is None:
|
139 |
+
file_name = "Bhankhara_Df_11_he_5_2020-21.geojson"
|
140 |
+
st.write(f"Using default file: {file_name}")
|
141 |
+
data = gpd.read_file(file_name)
|
142 |
+
with open(file_name) as f:
|
143 |
+
str_data = f.read()
|
144 |
+
else:
|
145 |
+
st.write(f"Using uploaded file: {uploaded_file.name}")
|
146 |
+
file_name = uploaded_file.name
|
147 |
+
bytes_data = uploaded_file.getvalue()
|
148 |
+
str_data = bytes_data.decode("utf-8")
|
149 |
+
|
150 |
+
|
151 |
+
if file_name.endswith(".geojson"):
|
152 |
+
geojson_data = json.loads(str_data)
|
153 |
+
elif file_name.endswith(".kml"):
|
154 |
+
geojson_data = json.loads(kml_to_gdf(str_data).to_json())
|
155 |
+
print(geojson_data)
|
156 |
+
|
157 |
+
# Read Geojson File
|
158 |
+
ee_object = geojson_to_ee(geojson_data)
|
159 |
+
|
160 |
+
# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
|
161 |
+
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterBounds(ee_object).filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_date, end_date)).select(['B4', 'B8'])
|
162 |
+
|
163 |
+
# Print Number of Images in collection
|
164 |
+
# print("Number of images", collection.size().getInfo())
|
165 |
+
st.write(f"Number of images: {collection.size().getInfo()}")
|
166 |
+
|
167 |
+
# Calculate NDVI as Normalized Index
|
168 |
+
def calculate_ndvi(image):
|
169 |
+
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
170 |
+
return image.addBands(ndvi)
|
171 |
+
|
172 |
+
collection = collection.map(calculate_ndvi)
|
173 |
+
|
174 |
+
# Write Zonalstats into csv file
|
175 |
+
# out_dir = os.path.join("Output")
|
176 |
+
# out_NDVI_stats = os.path.join(out_dir, "tmp.csv")
|
177 |
+
|
178 |
+
# if not os.path.exists(out_dir):
|
179 |
+
# os.makedirs(out_dir)
|
180 |
+
|
181 |
+
geemap.zonal_stats(collection.select(["NDVI"]), ee_object, "tmp.csv", stat_type="mean", scale=10)
|
182 |
+
|
183 |
+
# Show the table
|
184 |
+
df = pd.read_csv("tmp.csv")
|
185 |
+
df = df.T
|
186 |
+
df = df.reset_index()
|
187 |
+
df = df.iloc[:-2]
|
188 |
+
df['index'] = pd.to_datetime(df['index'].apply(lambda x: x.split('_')[1].split('T')[0])).dt.strftime('%Y-%m-%d')
|
189 |
+
df.rename(columns={'index': 'Date', 0: 'Mean NDVI'}, inplace=True)
|
190 |
+
st.write(df)
|
191 |
+
|
192 |
+
# plot the time series
|
193 |
+
st.write("Time Series Plot")
|
194 |
+
st.line_chart(df.set_index('Date'))
|
195 |
+
|
196 |
+
st.write(f"Overall Mean NDVI: {df['Mean NDVI'].mean():.2f}")
|