|
import streamlit as st
|
|
import pyaudio
|
|
import json
|
|
from vosk import Model, KaldiRecognizer
|
|
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
|
from sentence_transformers import SentenceTransformer
|
|
import time
|
|
import pandas as pd
|
|
from dotenv import load_dotenv
|
|
import os
|
|
import numpy as np
|
|
|
|
def cosine_similarity(a, b):
|
|
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
|
|
|
class SalesAnalysisApp:
|
|
def __init__(self):
|
|
model_name = "tabularisai/multilingual-sentiment-analysis"
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
self.sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
|
|
|
vosk_model_path = os.getenv("VOSK_MODEL_PATH")
|
|
self.vosk_model = Model(vosk_model_path)
|
|
self.recognizer = KaldiRecognizer(self.vosk_model, 16000)
|
|
|
|
self.audio = pyaudio.PyAudio()
|
|
self.stream = None
|
|
|
|
self.product_data = pd.read_csv(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
|
self.objection_data = pd.read_csv(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv")
|
|
|
|
self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
def get_recommendations(self, text):
|
|
text_embedding = self.sentence_model.encode([text])
|
|
product_embeddings = self.sentence_model.encode(self.product_data['Description'].tolist())
|
|
|
|
similarities = [cosine_similarity(text_embedding[0], prod_emb) for prod_emb in product_embeddings]
|
|
top_indices = np.argsort(similarities)[-5:][::-1]
|
|
return self.product_data.iloc[top_indices]['Product'].tolist()
|
|
|
|
def get_objection_response(self, text):
|
|
text_embedding = self.sentence_model.encode([text])
|
|
objection_embeddings = self.sentence_model.encode(self.objection_data['Objection'].tolist())
|
|
|
|
similarities = [cosine_similarity(text_embedding[0], obj_emb) for obj_emb in objection_embeddings]
|
|
max_similarity = max(similarities)
|
|
if max_similarity > 0.5:
|
|
top_idx = np.argmax(similarities)
|
|
return self.objection_data.iloc[top_idx]['Response']
|
|
return None
|
|
|
|
|
|
def analyze_sentiment(self, text):
|
|
if not text.strip():
|
|
return "NEUTRAL", 0.0
|
|
result = self.sentiment_analyzer(text.strip().lower())[0]
|
|
sentiment_map = {
|
|
'Very Negative': "NEGATIVE",
|
|
'Negative': "NEGATIVE",
|
|
'Neutral': "NEUTRAL",
|
|
'Positive': "POSITIVE",
|
|
'Very Positive': "POSITIVE"
|
|
}
|
|
return sentiment_map.get(result['label'], "NEUTRAL"), result['score']
|
|
|
|
def run_app(self):
|
|
st.title("Real-time Sales Call Analysis")
|
|
|
|
if st.button("Start Recording"):
|
|
self.stream = self.audio.open(format=pyaudio.paInt16,
|
|
channels=1,
|
|
rate=16000,
|
|
input=True,
|
|
frames_per_buffer=4000)
|
|
|
|
transcript_placeholder = st.empty()
|
|
sentiment_placeholder = st.empty()
|
|
recommendations_placeholder = st.empty()
|
|
objections_placeholder = st.empty()
|
|
|
|
try:
|
|
while True:
|
|
data = self.stream.read(4000, exception_on_overflow=False)
|
|
|
|
if self.recognizer.AcceptWaveform(data):
|
|
result = json.loads(self.recognizer.Result())
|
|
text = result["text"]
|
|
|
|
if text:
|
|
transcript_placeholder.write(f"Transcription: {text}")
|
|
|
|
sentiment, score = self.analyze_sentiment(text)
|
|
sentiment_placeholder.write(f"Sentiment: {sentiment} (Score: {score:.2f})")
|
|
|
|
recommendations = self.get_recommendations(text)
|
|
if recommendations:
|
|
recommendations_placeholder.write("Product Recommendations:")
|
|
for rec in recommendations:
|
|
recommendations_placeholder.write(f"- {rec}")
|
|
|
|
objection_response = self.get_objection_response(text)
|
|
if objection_response:
|
|
objections_placeholder.write(f"Suggested Response: {objection_response}")
|
|
|
|
time.sleep(0.1)
|
|
|
|
except Exception as e:
|
|
st.error(f"Error: {str(e)}")
|
|
if self.stream:
|
|
self.stream.stop_stream()
|
|
self.stream.close()
|
|
|
|
if __name__ == "__main__":
|
|
app = SalesAnalysisApp()
|
|
app.run_app() |