Upload 12 files
Browse files- ai-sales-call-assistant-457770399a34.json +13 -0
- app.py +295 -0
- env_setup.py +14 -0
- google_sheets.py +85 -0
- main.py +117 -0
- ml_insights.py +55 -0
- objection_handler.py +40 -0
- product_recommender.py +19 -0
- requirements.txt +15 -0
- sentiment_analysis.py +177 -0
- speech_to_text.py +76 -0
- utils.py +15 -0
ai-sales-call-assistant-457770399a34.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"type": "service_account",
|
3 |
+
"project_id": "ai-sales-call-assistant",
|
4 |
+
"private_key_id": "457770399a34b7fd34c166b27b25e0db381d32a8",
|
5 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQCqjFfvqapmJXtt\nG5NXZ8FoyxyCMflUI8EtyGiDjwuFsuHK6sQ6ZoMD/dWObHJH8p4kiiU+OvUSa5gM\nt8zYPnjpgV3FwU1opPL1kGFyip+MZxpbL0aY7rmrROUJKHXULFyjnKiWfMQqlxYk\nFAULWlPfkTM0abAJg6cSMSuZPo2Unb9yGhFdQObBL0Wg4QfulcKGMQGRmOvJsOwf\nCy+tUfZ9dAc0kKCnH5fZu6+/38Mq0Kc8IzJzgJwB+1VWvRfvKdSOI9oVw3nk3Ycm\nCpBMYv/mVybkSaDR1JSM3+7MLRDm53vCucB2HA+0Xui1WbHwbCAsUw+aHORcARLs\nxpRh0OelAgMBAAECggEAI1Tpzsu+cmTnegYRczUae2RAprRFq+mwVpTDGiYjQ/J4\nFnqmZlbgY45NlLDgyAj6PCWma4r5RHSnzlKxjEb885sKWzKdn8U0VC0yEvGm9gZS\nDnvvyzUBn/qo3EnWhzsdggOtZWe5l/0u6BCBrwVqhNFm4z/V6VKt5PXsy1WLLTNe\nROi8E9ezhRGfsn7oYa0uy8UEgddUeEUhLpFoX6WRO13e80hKCGk72tEL2MXAa8lR\nE/LtN9tQl/NlhMGHyB7+OyXkthZxCZaSzVhOV4K31uY4JMPvnKdNBrusjhj1KLGv\njb0QiKuoPFDhqMjIDwFv0xG2AjcCkdjqd5FqaQDdrQKBgQDc9gH6d8iatdW6ipo8\nL3/a93SNGQ9CPBx3+EF7zpbh24dEIaItjUSqFwLBFM84yysB0DU6HPj1MrZ3OtIe\njCjXYHlbn9fRz8gmps54RyoOaEvr9nauOej4MQ4tkn7cDIv2kVvewMRGcEO2DRXJ\nLg9mwxjxMVWSoy+A1P9LhjVqWwKBgQDFl8+9z/9tT0OoFZruWpz+ozKisCoPOp+l\nMz1+rYnB0h4LSY0TBPoqy296WkIDc/WTrHPlnmC5vEgjvT5v3KT3yHd0fIkw9AmM\nF59He6Ihj+FGrRxYO1xadVYdSCIHy4pCGOZLpKInWuZ1sdEQVzw4gYCxcfrMb4mO\nUAuUTy+V/wKBgFiguFRtnWIo00yacZj4eHEs1mwOBCfOEqEwS5vMVorLUitKzlE1\nG7iZuDoYDbI7E8oLaH4hxt4a9ENIraUhFPSmtqbAq4F1tVODjseBy+Wxgdpoplvl\n0INUsdonq4i5454H2fC0I0YZm583CmkCd50BXkzIPAmwOMqVJL13XI+HAoGAf4NB\n0BeLmcoeOjl/GzSkvfspcS3IZr2JSv3vQHHTRZ5IPzZ+8Pg0TSutzEK0+S97Goqe\n3F7BwvsLfuzgfyXf2/ulgynfCxVhl+OiqWnSrmAAnDCY6yObrNCt+wWS2H70wUT6\nUXR0JHuX3/oZlbcGKN0B5QFOPWH5Xjqvzkzvw5cCgYAlsZVJGakTmN6EEjYi/OwM\nUMQfuY6CPLD3kj57sezyW4fHKXwTkQ0y7fmHV4opQmuNbU9o1FBIVvZr03oBgXbm\n60K5qTE6JCKj7mPM9nOGl3327+DPGmIrQus+CsPPi6j8CLu4AXkmOhZ0aR2+Hy4e\nRLzsKUU3oGJ7pa1xFEGwJg==\n-----END PRIVATE KEY-----\n",
|
6 |
+
"client_email": "sales-bot-service@ai-sales-call-assistant.iam.gserviceaccount.com",
|
7 |
+
"client_id": "107478451989301946230",
|
8 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
9 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
10 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
11 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/sales-bot-service%40ai-sales-call-assistant.iam.gserviceaccount.com",
|
12 |
+
"universe_domain": "googleapis.com"
|
13 |
+
}
|
app.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import speech_recognition as sr
|
2 |
+
from sentiment_analysis import analyze_sentiment
|
3 |
+
from product_recommender import ProductRecommender
|
4 |
+
from objection_handler import ObjectionHandler
|
5 |
+
from google_sheets import fetch_call_data, store_data_in_sheet
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from env_setup import config
|
8 |
+
import re
|
9 |
+
import uuid
|
10 |
+
from google.oauth2 import service_account
|
11 |
+
from googleapiclient.discovery import build
|
12 |
+
import pandas as pd
|
13 |
+
import plotly.express as px
|
14 |
+
import plotly.graph_objs as go
|
15 |
+
import streamlit as st
|
16 |
+
|
17 |
+
# Initialize components
|
18 |
+
product_recommender = ProductRecommender(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
19 |
+
objection_handler = ObjectionHandler(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv")
|
20 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
21 |
+
|
22 |
+
def generate_comprehensive_summary(chunks):
|
23 |
+
"""
|
24 |
+
Generate a comprehensive summary from conversation chunks
|
25 |
+
"""
|
26 |
+
# Extract full text from chunks
|
27 |
+
full_text = " ".join([chunk[0] for chunk in chunks])
|
28 |
+
|
29 |
+
# Perform basic analysis
|
30 |
+
total_chunks = len(chunks)
|
31 |
+
sentiments = [chunk[1] for chunk in chunks]
|
32 |
+
|
33 |
+
# Determine overall conversation context
|
34 |
+
context_keywords = {
|
35 |
+
'product_inquiry': ['dress', 'product', 'price', 'stock'],
|
36 |
+
'pricing': ['cost', 'price', 'budget'],
|
37 |
+
'negotiation': ['installment', 'payment', 'manage']
|
38 |
+
}
|
39 |
+
|
40 |
+
# Detect conversation themes
|
41 |
+
themes = []
|
42 |
+
for keyword_type, keywords in context_keywords.items():
|
43 |
+
if any(keyword.lower() in full_text.lower() for keyword in keywords):
|
44 |
+
themes.append(keyword_type)
|
45 |
+
|
46 |
+
# Basic sentiment analysis
|
47 |
+
positive_count = sentiments.count('POSITIVE')
|
48 |
+
negative_count = sentiments.count('NEGATIVE')
|
49 |
+
neutral_count = sentiments.count('NEUTRAL')
|
50 |
+
|
51 |
+
# Key interaction highlights
|
52 |
+
key_interactions = []
|
53 |
+
for chunk in chunks:
|
54 |
+
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
|
55 |
+
key_interactions.append(chunk[0])
|
56 |
+
|
57 |
+
# Construct summary
|
58 |
+
summary = f"Conversation Summary:\n"
|
59 |
+
|
60 |
+
# Context and themes
|
61 |
+
if 'product_inquiry' in themes:
|
62 |
+
summary += "• Customer initiated a product inquiry about items.\n"
|
63 |
+
|
64 |
+
if 'pricing' in themes:
|
65 |
+
summary += "• Price and budget considerations were discussed.\n"
|
66 |
+
|
67 |
+
if 'negotiation' in themes:
|
68 |
+
summary += "• Customer and seller explored flexible payment options.\n"
|
69 |
+
|
70 |
+
# Sentiment insights
|
71 |
+
summary += f"\nConversation Sentiment:\n"
|
72 |
+
summary += f"• Positive Interactions: {positive_count}\n"
|
73 |
+
summary += f"• Negative Interactions: {negative_count}\n"
|
74 |
+
summary += f"• Neutral Interactions: {neutral_count}\n"
|
75 |
+
|
76 |
+
# Key highlights
|
77 |
+
summary += "\nKey Conversation Points:\n"
|
78 |
+
for interaction in key_interactions[:3]: # Limit to top 3 key points
|
79 |
+
summary += f"• {interaction}\n"
|
80 |
+
|
81 |
+
# Conversation outcome
|
82 |
+
if positive_count > negative_count:
|
83 |
+
summary += "\nOutcome: Constructive and potentially successful interaction."
|
84 |
+
elif negative_count > positive_count:
|
85 |
+
summary += "\nOutcome: Interaction may require further follow-up."
|
86 |
+
else:
|
87 |
+
summary += "\nOutcome: Neutral interaction with potential for future engagement."
|
88 |
+
|
89 |
+
return summary
|
90 |
+
|
91 |
+
def is_valid_input(text):
|
92 |
+
text = text.strip().lower()
|
93 |
+
if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
|
94 |
+
return False
|
95 |
+
return True
|
96 |
+
|
97 |
+
def is_relevant_sentiment(sentiment_score):
|
98 |
+
return sentiment_score > 0.4
|
99 |
+
|
100 |
+
def calculate_overall_sentiment(sentiment_scores):
|
101 |
+
if sentiment_scores:
|
102 |
+
average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
|
103 |
+
overall_sentiment = (
|
104 |
+
"POSITIVE" if average_sentiment > 0 else
|
105 |
+
"NEGATIVE" if average_sentiment < 0 else
|
106 |
+
"NEUTRAL"
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
overall_sentiment = "NEUTRAL"
|
110 |
+
return overall_sentiment
|
111 |
+
|
112 |
+
def real_time_analysis():
|
113 |
+
recognizer = sr.Recognizer()
|
114 |
+
mic = sr.Microphone()
|
115 |
+
|
116 |
+
st.info("Say 'stop' to end the process.")
|
117 |
+
|
118 |
+
sentiment_scores = []
|
119 |
+
transcribed_chunks = []
|
120 |
+
total_text = ""
|
121 |
+
|
122 |
+
try:
|
123 |
+
while True:
|
124 |
+
with mic as source:
|
125 |
+
st.write("Listening...")
|
126 |
+
recognizer.adjust_for_ambient_noise(source)
|
127 |
+
audio = recognizer.listen(source)
|
128 |
+
|
129 |
+
try:
|
130 |
+
st.write("Recognizing...")
|
131 |
+
text = recognizer.recognize_google(audio)
|
132 |
+
st.write(f"*Recognized Text:* {text}")
|
133 |
+
|
134 |
+
if 'stop' in text.lower():
|
135 |
+
st.write("Stopping real-time analysis...")
|
136 |
+
break
|
137 |
+
|
138 |
+
# Append to the total conversation
|
139 |
+
total_text += text + " "
|
140 |
+
sentiment, score = analyze_sentiment(text)
|
141 |
+
sentiment_scores.append(score)
|
142 |
+
|
143 |
+
# Handle objection
|
144 |
+
objection_response = handle_objection(text)
|
145 |
+
|
146 |
+
# Get product recommendation
|
147 |
+
recommendations = []
|
148 |
+
if is_valid_input(text) and is_relevant_sentiment(score):
|
149 |
+
query_embedding = model.encode([text])
|
150 |
+
distances, indices = product_recommender.index.search(query_embedding, 1)
|
151 |
+
|
152 |
+
if distances[0][0] < 1.5: # Similarity threshold
|
153 |
+
recommendations = product_recommender.get_recommendations(text)
|
154 |
+
|
155 |
+
transcribed_chunks.append((text, sentiment, score))
|
156 |
+
|
157 |
+
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
|
158 |
+
st.write(f"*Objection Response:* {objection_response}")
|
159 |
+
|
160 |
+
if recommendations:
|
161 |
+
st.write("*Product Recommendations:*")
|
162 |
+
for rec in recommendations:
|
163 |
+
st.write(rec)
|
164 |
+
|
165 |
+
except sr.UnknownValueError:
|
166 |
+
st.error("Speech Recognition could not understand the audio.")
|
167 |
+
except sr.RequestError as e:
|
168 |
+
st.error(f"Error with the Speech Recognition service: {e}")
|
169 |
+
except Exception as e:
|
170 |
+
st.error(f"Error during processing: {e}")
|
171 |
+
|
172 |
+
# After conversation ends, calculate and display overall sentiment and summary
|
173 |
+
overall_sentiment = calculate_overall_sentiment(sentiment_scores)
|
174 |
+
call_summary = generate_comprehensive_summary(transcribed_chunks)
|
175 |
+
|
176 |
+
st.subheader("Conversation Summary:")
|
177 |
+
st.write(total_text.strip())
|
178 |
+
st.subheader("Overall Sentiment:")
|
179 |
+
st.write(overall_sentiment)
|
180 |
+
|
181 |
+
# Store data in Google Sheets
|
182 |
+
store_data_in_sheet(
|
183 |
+
config["google_sheet_id"],
|
184 |
+
transcribed_chunks,
|
185 |
+
call_summary,
|
186 |
+
overall_sentiment
|
187 |
+
)
|
188 |
+
st.success("Conversation data stored successfully in Google Sheets!")
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
st.error(f"Error in real-time analysis: {e}")
|
192 |
+
|
193 |
+
def handle_objection(text):
|
194 |
+
query_embedding = model.encode([text])
|
195 |
+
distances, indices = objection_handler.index.search(query_embedding, 1)
|
196 |
+
if distances[0][0] < 1.5: # Adjust similarity threshold as needed
|
197 |
+
responses = objection_handler.handle_objection(text)
|
198 |
+
return "\n".join(responses) if responses else "No objection response found."
|
199 |
+
return "No objection response found."
|
200 |
+
|
201 |
+
# (Previous imports remain the same)
|
202 |
+
|
203 |
+
def run_app():
|
204 |
+
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
|
205 |
+
st.title("AI Sales Call Assistant")
|
206 |
+
|
207 |
+
st.sidebar.title("Navigation")
|
208 |
+
app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])
|
209 |
+
|
210 |
+
if app_mode == "Real-Time Call Analysis":
|
211 |
+
st.header("Real-Time Sales Call Analysis")
|
212 |
+
if st.button("Start Listening"):
|
213 |
+
real_time_analysis()
|
214 |
+
|
215 |
+
elif app_mode == "Dashboard":
|
216 |
+
st.header("Call Summaries and Sentiment Analysis")
|
217 |
+
try:
|
218 |
+
data = fetch_call_data(config["google_sheet_id"])
|
219 |
+
if data.empty:
|
220 |
+
st.warning("No data available in the Google Sheet.")
|
221 |
+
else:
|
222 |
+
# Sentiment Visualizations
|
223 |
+
sentiment_counts = data['Sentiment'].value_counts()
|
224 |
+
|
225 |
+
# Pie Chart
|
226 |
+
col1, col2 = st.columns(2)
|
227 |
+
with col1:
|
228 |
+
st.subheader("Sentiment Distribution")
|
229 |
+
fig_pie = px.pie(
|
230 |
+
values=sentiment_counts.values,
|
231 |
+
names=sentiment_counts.index,
|
232 |
+
title='Call Sentiment Breakdown',
|
233 |
+
color_discrete_map={
|
234 |
+
'POSITIVE': 'green',
|
235 |
+
'NEGATIVE': 'red',
|
236 |
+
'NEUTRAL': 'blue'
|
237 |
+
}
|
238 |
+
)
|
239 |
+
st.plotly_chart(fig_pie)
|
240 |
+
|
241 |
+
# Bar Chart
|
242 |
+
with col2:
|
243 |
+
st.subheader("Sentiment Counts")
|
244 |
+
fig_bar = px.bar(
|
245 |
+
x=sentiment_counts.index,
|
246 |
+
y=sentiment_counts.values,
|
247 |
+
title='Number of Calls by Sentiment',
|
248 |
+
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
|
249 |
+
color=sentiment_counts.index,
|
250 |
+
color_discrete_map={
|
251 |
+
'POSITIVE': 'green',
|
252 |
+
'NEGATIVE': 'red',
|
253 |
+
'NEUTRAL': 'blue'
|
254 |
+
}
|
255 |
+
)
|
256 |
+
st.plotly_chart(fig_bar)
|
257 |
+
|
258 |
+
# Existing Call Details Section
|
259 |
+
st.subheader("All Calls")
|
260 |
+
display_data = data.copy()
|
261 |
+
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
262 |
+
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
263 |
+
|
264 |
+
# Dropdown to select Call ID
|
265 |
+
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
|
266 |
+
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
|
267 |
+
|
268 |
+
# Display selected Call ID details
|
269 |
+
call_details = data[data['Call ID'] == call_id]
|
270 |
+
if not call_details.empty:
|
271 |
+
st.subheader("Detailed Call Information")
|
272 |
+
st.write(f"**Call ID:** {call_id}")
|
273 |
+
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
274 |
+
|
275 |
+
# Expand summary section
|
276 |
+
st.subheader("Full Call Summary")
|
277 |
+
st.text_area("Summary:",
|
278 |
+
value=call_details.iloc[0]['Summary'],
|
279 |
+
height=200,
|
280 |
+
disabled=True)
|
281 |
+
|
282 |
+
# Show all chunks for the selected call
|
283 |
+
st.subheader("Conversation Chunks")
|
284 |
+
for _, row in call_details.iterrows():
|
285 |
+
if pd.notna(row['Chunk']):
|
286 |
+
st.write(f"**Chunk:** {row['Chunk']}")
|
287 |
+
st.write(f"**Sentiment:** {row['Sentiment']}")
|
288 |
+
st.write("---") # Separator between chunks
|
289 |
+
else:
|
290 |
+
st.error("No details available for the selected Call ID.")
|
291 |
+
except Exception as e:
|
292 |
+
st.error(f"Error loading dashboard: {e}")
|
293 |
+
|
294 |
+
if __name__ == "__main__":
|
295 |
+
run_app()
|
env_setup.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
load_dotenv()
|
5 |
+
|
6 |
+
config = {
|
7 |
+
"google_creds": os.getenv("google_creds"),
|
8 |
+
"huggingface_api_key": os.getenv("huggingface_api_key"),
|
9 |
+
"google_sheet_id": os.getenv("google_sheet_id"),
|
10 |
+
"vosk_model_path": os.getenv("vosk_model_path"),
|
11 |
+
"PRODUCT_DATA_PATH": os.getenv("PRODUCT_DATA_PATH"),
|
12 |
+
"OBJECTION_DATA_PATH": os.getenv("OBJECTION_DATA_PATH"),
|
13 |
+
"cohere_api_key": os.getenv("cohere_api_key")
|
14 |
+
}
|
google_sheets.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uuid
|
2 |
+
from google.oauth2 import service_account
|
3 |
+
from googleapiclient.discovery import build
|
4 |
+
from env_setup import config
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
SCOPES = ['https://www.googleapis.com/auth/spreadsheets']
|
8 |
+
|
9 |
+
def authenticate_google_account():
|
10 |
+
service_account_file = config["google_creds"]
|
11 |
+
if not service_account_file:
|
12 |
+
raise ValueError("Service account credentials path is missing in env_setup.py.")
|
13 |
+
return service_account.Credentials.from_service_account_file(service_account_file, scopes=SCOPES)
|
14 |
+
|
15 |
+
def store_data_in_sheet(sheet_id, chunks, summary, overall_sentiment):
|
16 |
+
creds = authenticate_google_account()
|
17 |
+
service = build('sheets', 'v4', credentials=creds)
|
18 |
+
sheet = service.spreadsheets()
|
19 |
+
|
20 |
+
call_id = str(uuid.uuid4())
|
21 |
+
print(f"Call ID: {call_id}")
|
22 |
+
|
23 |
+
values = []
|
24 |
+
if chunks:
|
25 |
+
first_chunk, first_sentiment, _ = chunks[0]
|
26 |
+
values.append([call_id, first_chunk, first_sentiment, summary, overall_sentiment])
|
27 |
+
for chunk, sentiment, _ in chunks[1:]:
|
28 |
+
values.append(["", chunk, sentiment, "", ""])
|
29 |
+
|
30 |
+
header = ["Call ID", "Chunk", "Sentiment", "Summary", "Overall Sentiment"]
|
31 |
+
all_values = [header] + values
|
32 |
+
|
33 |
+
body = {'values': all_values}
|
34 |
+
try:
|
35 |
+
result = sheet.values().append(
|
36 |
+
spreadsheetId=sheet_id,
|
37 |
+
range="Sheet1!A1",
|
38 |
+
valueInputOption="RAW",
|
39 |
+
body=body
|
40 |
+
).execute()
|
41 |
+
print(f"{result.get('updates').get('updatedCells')} cells updated in Google Sheets.")
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error updating Google Sheets: {e}")
|
44 |
+
|
45 |
+
def fetch_call_data(sheet_id, sheet_range="Sheet1!A1:E"):
|
46 |
+
"""
|
47 |
+
Fetches data from the specified Google Sheet and returns a pandas DataFrame.
|
48 |
+
|
49 |
+
:param sheet_id: The ID of the Google Sheet to fetch data from.
|
50 |
+
:param sheet_range: The range in A1 notation to fetch data from.
|
51 |
+
:return: pandas DataFrame with the sheet data.
|
52 |
+
"""
|
53 |
+
try:
|
54 |
+
# Authenticate and get credentials
|
55 |
+
creds = authenticate_google_account()
|
56 |
+
service = build('sheets', 'v4', credentials=creds)
|
57 |
+
sheet = service.spreadsheets()
|
58 |
+
|
59 |
+
# Fetch the data
|
60 |
+
result = sheet.values().get(
|
61 |
+
spreadsheetId=sheet_id,
|
62 |
+
range=sheet_range
|
63 |
+
).execute()
|
64 |
+
|
65 |
+
# Get the rows
|
66 |
+
rows = result.get("values", [])
|
67 |
+
|
68 |
+
# If rows exist, convert to DataFrame
|
69 |
+
if rows:
|
70 |
+
# Use the first row as column headers
|
71 |
+
headers = rows[0]
|
72 |
+
data = rows[1:]
|
73 |
+
|
74 |
+
# Create DataFrame
|
75 |
+
df = pd.DataFrame(data, columns=headers)
|
76 |
+
|
77 |
+
return df
|
78 |
+
else:
|
79 |
+
# Return an empty DataFrame if no data
|
80 |
+
return pd.DataFrame()
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error fetching data from Google Sheets: {e}")
|
84 |
+
# Return an empty DataFrame in case of error
|
85 |
+
return pd.DataFrame()
|
main.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pyaudio
|
3 |
+
import json
|
4 |
+
from vosk import Model, KaldiRecognizer
|
5 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import time
|
8 |
+
import pandas as pd
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import os
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
def cosine_similarity(a, b):
|
14 |
+
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
15 |
+
|
16 |
+
class SalesAnalysisApp:
|
17 |
+
def __init__(self):
|
18 |
+
model_name = "tabularisai/multilingual-sentiment-analysis"
|
19 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
+
self.sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
22 |
+
|
23 |
+
vosk_model_path = os.getenv("VOSK_MODEL_PATH")
|
24 |
+
self.vosk_model = Model(vosk_model_path)
|
25 |
+
self.recognizer = KaldiRecognizer(self.vosk_model, 16000)
|
26 |
+
|
27 |
+
self.audio = pyaudio.PyAudio()
|
28 |
+
self.stream = None
|
29 |
+
|
30 |
+
self.product_data = pd.read_csv(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
31 |
+
self.objection_data = pd.read_csv(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv")
|
32 |
+
|
33 |
+
self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
34 |
+
|
35 |
+
def get_recommendations(self, text):
|
36 |
+
text_embedding = self.sentence_model.encode([text])
|
37 |
+
product_embeddings = self.sentence_model.encode(self.product_data['Description'].tolist())
|
38 |
+
|
39 |
+
similarities = [cosine_similarity(text_embedding[0], prod_emb) for prod_emb in product_embeddings]
|
40 |
+
top_indices = np.argsort(similarities)[-5:][::-1]
|
41 |
+
return self.product_data.iloc[top_indices]['Product'].tolist()
|
42 |
+
|
43 |
+
def get_objection_response(self, text):
|
44 |
+
text_embedding = self.sentence_model.encode([text])
|
45 |
+
objection_embeddings = self.sentence_model.encode(self.objection_data['Objection'].tolist())
|
46 |
+
|
47 |
+
similarities = [cosine_similarity(text_embedding[0], obj_emb) for obj_emb in objection_embeddings]
|
48 |
+
max_similarity = max(similarities)
|
49 |
+
if max_similarity > 0.5:
|
50 |
+
top_idx = np.argmax(similarities)
|
51 |
+
return self.objection_data.iloc[top_idx]['Response']
|
52 |
+
return None
|
53 |
+
|
54 |
+
# Rest of the code remains the same...
|
55 |
+
def analyze_sentiment(self, text):
|
56 |
+
if not text.strip():
|
57 |
+
return "NEUTRAL", 0.0
|
58 |
+
result = self.sentiment_analyzer(text.strip().lower())[0]
|
59 |
+
sentiment_map = {
|
60 |
+
'Very Negative': "NEGATIVE",
|
61 |
+
'Negative': "NEGATIVE",
|
62 |
+
'Neutral': "NEUTRAL",
|
63 |
+
'Positive': "POSITIVE",
|
64 |
+
'Very Positive': "POSITIVE"
|
65 |
+
}
|
66 |
+
return sentiment_map.get(result['label'], "NEUTRAL"), result['score']
|
67 |
+
|
68 |
+
def run_app(self):
|
69 |
+
st.title("Real-time Sales Call Analysis")
|
70 |
+
|
71 |
+
if st.button("Start Recording"):
|
72 |
+
self.stream = self.audio.open(format=pyaudio.paInt16,
|
73 |
+
channels=1,
|
74 |
+
rate=16000,
|
75 |
+
input=True,
|
76 |
+
frames_per_buffer=4000)
|
77 |
+
|
78 |
+
transcript_placeholder = st.empty()
|
79 |
+
sentiment_placeholder = st.empty()
|
80 |
+
recommendations_placeholder = st.empty()
|
81 |
+
objections_placeholder = st.empty()
|
82 |
+
|
83 |
+
try:
|
84 |
+
while True:
|
85 |
+
data = self.stream.read(4000, exception_on_overflow=False)
|
86 |
+
|
87 |
+
if self.recognizer.AcceptWaveform(data):
|
88 |
+
result = json.loads(self.recognizer.Result())
|
89 |
+
text = result["text"]
|
90 |
+
|
91 |
+
if text:
|
92 |
+
transcript_placeholder.write(f"Transcription: {text}")
|
93 |
+
|
94 |
+
sentiment, score = self.analyze_sentiment(text)
|
95 |
+
sentiment_placeholder.write(f"Sentiment: {sentiment} (Score: {score:.2f})")
|
96 |
+
|
97 |
+
recommendations = self.get_recommendations(text)
|
98 |
+
if recommendations:
|
99 |
+
recommendations_placeholder.write("Product Recommendations:")
|
100 |
+
for rec in recommendations:
|
101 |
+
recommendations_placeholder.write(f"- {rec}")
|
102 |
+
|
103 |
+
objection_response = self.get_objection_response(text)
|
104 |
+
if objection_response:
|
105 |
+
objections_placeholder.write(f"Suggested Response: {objection_response}")
|
106 |
+
|
107 |
+
time.sleep(0.1)
|
108 |
+
|
109 |
+
except Exception as e:
|
110 |
+
st.error(f"Error: {str(e)}")
|
111 |
+
if self.stream:
|
112 |
+
self.stream.stop_stream()
|
113 |
+
self.stream.close()
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
app = SalesAnalysisApp()
|
117 |
+
app.run_app()
|
ml_insights.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import seaborn as sns
|
5 |
+
from sklearn.linear_model import LinearRegression
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
def generate_insights(call_data):
|
9 |
+
"""
|
10 |
+
Generate ML insights and visualizations from call data
|
11 |
+
"""
|
12 |
+
# Convert call data to DataFrame
|
13 |
+
df = pd.DataFrame(call_data)
|
14 |
+
|
15 |
+
# Sentiment distribution pie chart
|
16 |
+
plt.figure(figsize=(10, 6))
|
17 |
+
sentiment_counts = df['sentiment'].value_counts()
|
18 |
+
plt.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%')
|
19 |
+
plt.title('Sentiment Distribution')
|
20 |
+
st.pyplot(plt)
|
21 |
+
plt.close()
|
22 |
+
|
23 |
+
# Calculate sentiment trend
|
24 |
+
df['sentiment_numeric'] = df['sentiment'].map({'POSITIVE': 1, 'NEGATIVE': -1, 'NEUTRAL': 0})
|
25 |
+
|
26 |
+
# Simple trend analysis
|
27 |
+
X = np.array(range(len(df))).reshape(-1, 1)
|
28 |
+
y = df['sentiment_numeric'].values
|
29 |
+
|
30 |
+
model = LinearRegression()
|
31 |
+
model.fit(X, y)
|
32 |
+
|
33 |
+
# Predict trend
|
34 |
+
trend_score = model.coef_[0]
|
35 |
+
trend_interpretation = (
|
36 |
+
"Improving" if trend_score > 0.1 else
|
37 |
+
"Declining" if trend_score < -0.1 else
|
38 |
+
"Stable"
|
39 |
+
)
|
40 |
+
|
41 |
+
# Summary metrics
|
42 |
+
st.subheader("Call Analysis Summary")
|
43 |
+
st.write(f"Total Calls: {len(df)}")
|
44 |
+
st.write("Sentiment Breakdown:")
|
45 |
+
st.write(sentiment_counts)
|
46 |
+
st.write(f"Sentiment Trend: {trend_interpretation}")
|
47 |
+
|
48 |
+
def main():
|
49 |
+
st.title("Sales Call Insights")
|
50 |
+
|
51 |
+
# Placeholder for loading data mechanism
|
52 |
+
st.write("Insights generation ready.")
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
main()
|
objection_handler.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import faiss
|
4 |
+
|
5 |
+
def load_objections(file_path):
|
6 |
+
"""Load objections from a CSV file into a dictionary."""
|
7 |
+
try:
|
8 |
+
objections_df = pd.read_csv(file_path)
|
9 |
+
objections_dict = {}
|
10 |
+
for index, row in objections_df.iterrows():
|
11 |
+
objections_dict[row['Customer Objection']] = row['Salesperson Response']
|
12 |
+
return objections_dict
|
13 |
+
except Exception as e:
|
14 |
+
print(f"Error loading objections: {e}")
|
15 |
+
return {}
|
16 |
+
|
17 |
+
def check_objections(text, objections_dict):
|
18 |
+
"""Check for objections in the given text and return responses."""
|
19 |
+
responses = []
|
20 |
+
for objection, response in objections_dict.items():
|
21 |
+
if objection.lower() in text.lower():
|
22 |
+
responses.append(response)
|
23 |
+
return responses
|
24 |
+
|
25 |
+
class ObjectionHandler:
|
26 |
+
def __init__(self, objection_data_path):
|
27 |
+
self.data = pd.read_csv(objection_data_path)
|
28 |
+
self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
29 |
+
self.embeddings = self.model.encode(self.data['Customer Objection'].tolist())
|
30 |
+
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
|
31 |
+
self.index.add(self.embeddings)
|
32 |
+
|
33 |
+
def handle_objection(self, query, top_n=1):
|
34 |
+
"""Handle objections using embeddings."""
|
35 |
+
query_embedding = self.model.encode([query])
|
36 |
+
distances, indices = self.index.search(query_embedding, top_n)
|
37 |
+
responses = []
|
38 |
+
for i in indices[0]:
|
39 |
+
responses.append(self.data.iloc[i]['Salesperson Response'])
|
40 |
+
return responses
|
product_recommender.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import faiss
|
4 |
+
|
5 |
+
class ProductRecommender:
|
6 |
+
def __init__(self, product_data_path):
|
7 |
+
self.data = pd.read_csv(product_data_path)
|
8 |
+
self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
9 |
+
self.embeddings = self.model.encode(self.data['product_description'].tolist())
|
10 |
+
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
|
11 |
+
self.index.add(self.embeddings)
|
12 |
+
|
13 |
+
def get_recommendations(self, query, top_n=5):
|
14 |
+
query_embedding = self.model.encode([query])
|
15 |
+
distances, indices = self.index.search(query_embedding, top_n)
|
16 |
+
recommendations = []
|
17 |
+
for i in indices[0]:
|
18 |
+
recommendations.append(self.data.iloc[i]['product_title'] + ": " + self.data.iloc[i]['product_description'])
|
19 |
+
return recommendations
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
google-api-python-client==2.98.0
|
2 |
+
google-auth-httplib2==0.1.0
|
3 |
+
google-auth-oauthlib==0.6.0
|
4 |
+
huggingface-hub==0.16.4
|
5 |
+
transformers==4.32.0
|
6 |
+
torch==2.1.0
|
7 |
+
speechrecognition==3.8.1
|
8 |
+
pyaudio==0.2.11
|
9 |
+
python-dotenv==1.0.0
|
10 |
+
vosk==0.3.32
|
11 |
+
pandas==2.1.4
|
12 |
+
plotly==5.18.0
|
13 |
+
streamlit==1.30.0
|
14 |
+
sentence-transformers==2.2.2
|
15 |
+
faiss-cpu==1.7.4
|
sentiment_analysis.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
import pyaudio
|
5 |
+
from vosk import Model, KaldiRecognizer
|
6 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
7 |
+
from huggingface_hub import login
|
8 |
+
from product_recommender import ProductRecommender
|
9 |
+
from objection_handler import load_objections, check_objections # Ensure check_objections is imported
|
10 |
+
from objection_handler import ObjectionHandler
|
11 |
+
from env_setup import config
|
12 |
+
from sentence_transformers import SentenceTransformer
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
|
15 |
+
# Load environment variables
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
# Initialize the ProductRecommender
|
19 |
+
product_recommender = ProductRecommender(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
20 |
+
|
21 |
+
# Hugging Face API setup
|
22 |
+
huggingface_api_key = config["huggingface_api_key"]
|
23 |
+
login(token=huggingface_api_key)
|
24 |
+
|
25 |
+
# Sentiment Analysis Model
|
26 |
+
model_name = "tabularisai/multilingual-sentiment-analysis"
|
27 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
30 |
+
|
31 |
+
# Vosk Speech Recognition Model
|
32 |
+
vosk_model_path = config["vosk_model_path"]
|
33 |
+
|
34 |
+
if not vosk_model_path:
|
35 |
+
raise ValueError("Error: vosk_model_path is not set in the .env file.")
|
36 |
+
|
37 |
+
try:
|
38 |
+
vosk_model = Model(vosk_model_path)
|
39 |
+
print("Vosk model loaded successfully.")
|
40 |
+
except Exception as e:
|
41 |
+
raise ValueError(f"Failed to load Vosk model: {e}")
|
42 |
+
|
43 |
+
recognizer = KaldiRecognizer(vosk_model, 16000)
|
44 |
+
audio = pyaudio.PyAudio()
|
45 |
+
|
46 |
+
stream = audio.open(format=pyaudio.paInt16,
|
47 |
+
channels=1,
|
48 |
+
rate=16000,
|
49 |
+
input=True,
|
50 |
+
frames_per_buffer=4000)
|
51 |
+
stream.start_stream()
|
52 |
+
|
53 |
+
# Function to analyze sentiment
|
54 |
+
def preprocess_text(text):
|
55 |
+
"""Preprocess text for better sentiment analysis."""
|
56 |
+
# Strip whitespace and convert to lowercase
|
57 |
+
processed = text.strip().lower()
|
58 |
+
return processed
|
59 |
+
|
60 |
+
def preprocess_text(text):
|
61 |
+
"""Preprocess text for better sentiment analysis."""
|
62 |
+
return text.strip().lower()
|
63 |
+
|
64 |
+
def analyze_sentiment(text):
|
65 |
+
"""Analyze sentiment of the text using Hugging Face model."""
|
66 |
+
try:
|
67 |
+
if not text.strip():
|
68 |
+
return "NEUTRAL", 0.0
|
69 |
+
|
70 |
+
processed_text = preprocess_text(text)
|
71 |
+
result = sentiment_analyzer(processed_text)[0]
|
72 |
+
|
73 |
+
print(f"Sentiment Analysis Result: {result}")
|
74 |
+
|
75 |
+
# Map raw labels to sentiments
|
76 |
+
sentiment_map = {
|
77 |
+
'Very Negative': "NEGATIVE",
|
78 |
+
'Negative': "NEGATIVE",
|
79 |
+
'Neutral': "NEUTRAL",
|
80 |
+
'Positive': "POSITIVE",
|
81 |
+
'Very Positive': "POSITIVE"
|
82 |
+
}
|
83 |
+
|
84 |
+
sentiment = sentiment_map.get(result['label'], "NEUTRAL")
|
85 |
+
return sentiment, result['score']
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
print(f"Error in sentiment analysis: {e}")
|
89 |
+
return "NEUTRAL", 0.5
|
90 |
+
|
91 |
+
def transcribe_with_chunks(objections_dict):
|
92 |
+
"""Perform real-time transcription with sentiment analysis."""
|
93 |
+
print("Say 'start listening' to begin transcription. Say 'stop listening' to stop.")
|
94 |
+
is_listening = False
|
95 |
+
chunks = []
|
96 |
+
current_chunk = []
|
97 |
+
chunk_start_time = time.time()
|
98 |
+
|
99 |
+
# Initialize handlers with semantic search capabilities
|
100 |
+
objection_handler = ObjectionHandler(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv")
|
101 |
+
product_recommender = ProductRecommender(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
102 |
+
|
103 |
+
# Load the embeddings model once
|
104 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
105 |
+
|
106 |
+
try:
|
107 |
+
while True:
|
108 |
+
data = stream.read(4000, exception_on_overflow=False)
|
109 |
+
|
110 |
+
if recognizer.AcceptWaveform(data):
|
111 |
+
result = recognizer.Result()
|
112 |
+
text = json.loads(result)["text"]
|
113 |
+
|
114 |
+
if "start listening" in text.lower():
|
115 |
+
is_listening = True
|
116 |
+
print("Listening started. Speak into the microphone.")
|
117 |
+
continue
|
118 |
+
elif "stop listening" in text.lower():
|
119 |
+
is_listening = False
|
120 |
+
print("Listening stopped.")
|
121 |
+
if current_chunk:
|
122 |
+
chunk_text = " ".join(current_chunk)
|
123 |
+
sentiment, score = analyze_sentiment(chunk_text)
|
124 |
+
chunks.append((chunk_text, sentiment, score))
|
125 |
+
current_chunk = []
|
126 |
+
continue
|
127 |
+
|
128 |
+
if is_listening and text.strip():
|
129 |
+
print(f"Transcription: {text}")
|
130 |
+
current_chunk.append(text)
|
131 |
+
|
132 |
+
if time.time() - chunk_start_time > 3:
|
133 |
+
if current_chunk:
|
134 |
+
chunk_text = " ".join(current_chunk)
|
135 |
+
|
136 |
+
# Always process sentiment
|
137 |
+
sentiment, score = analyze_sentiment(chunk_text)
|
138 |
+
chunks.append((chunk_text, sentiment, score))
|
139 |
+
|
140 |
+
# Get objection responses and check similarity score
|
141 |
+
query_embedding = model.encode([chunk_text])
|
142 |
+
distances, indices = objection_handler.index.search(query_embedding, 1)
|
143 |
+
|
144 |
+
# If similarity is high enough, show objection response
|
145 |
+
if distances[0][0] < 1.5: # Threshold for similarity
|
146 |
+
responses = objection_handler.handle_objection(chunk_text)
|
147 |
+
if responses:
|
148 |
+
print("\nSuggested Response:")
|
149 |
+
for response in responses:
|
150 |
+
print(f"→ {response}")
|
151 |
+
|
152 |
+
# Get product recommendations and check similarity score
|
153 |
+
distances, indices = product_recommender.index.search(query_embedding, 1)
|
154 |
+
|
155 |
+
# If similarity is high enough, show recommendations
|
156 |
+
if distances[0][0] < 1.5: # Threshold for similarity
|
157 |
+
recommendations = product_recommender.get_recommendations(chunk_text)
|
158 |
+
if recommendations:
|
159 |
+
print(f"\nRecommendations for this response:")
|
160 |
+
for idx, rec in enumerate(recommendations, 1):
|
161 |
+
print(f"{idx}. {rec}")
|
162 |
+
|
163 |
+
print("\n")
|
164 |
+
current_chunk = []
|
165 |
+
chunk_start_time = time.time()
|
166 |
+
|
167 |
+
except KeyboardInterrupt:
|
168 |
+
print("\nExiting...")
|
169 |
+
stream.stop_stream()
|
170 |
+
|
171 |
+
return chunks
|
172 |
+
|
173 |
+
if __name__ == "__main__":
|
174 |
+
objections_file_path = r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv"
|
175 |
+
objections_dict = load_objections(objections_file_path)
|
176 |
+
transcribed_chunks = transcribe_with_chunks(objections_dict)
|
177 |
+
print("Final transcriptions and sentiments:", transcribed_chunks)
|
speech_to_text.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import os
|
3 |
+
from vosk import Model, KaldiRecognizer
|
4 |
+
import pyaudio
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Load environment variables from .env file
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
# Get the Vosk model path from the environment variable
|
11 |
+
vosk_model_path = os.getenv("vosk_model_path")
|
12 |
+
|
13 |
+
if not vosk_model_path:
|
14 |
+
print("Error: vosk_model_path is not set in the .env file.")
|
15 |
+
exit()
|
16 |
+
|
17 |
+
# Initialize the Vosk model
|
18 |
+
try:
|
19 |
+
model = Model(vosk_model_path)
|
20 |
+
print("Vosk model loaded successfully.")
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Failed to load Vosk model: {e}")
|
23 |
+
exit()
|
24 |
+
|
25 |
+
# Initialize recognizer and audio input
|
26 |
+
recognizer = KaldiRecognizer(model, 16000)
|
27 |
+
audio = pyaudio.PyAudio()
|
28 |
+
|
29 |
+
# Open audio stream
|
30 |
+
stream = audio.open(format=pyaudio.paInt16,
|
31 |
+
channels=1,
|
32 |
+
rate=16000,
|
33 |
+
input=True,
|
34 |
+
frames_per_buffer=4000)
|
35 |
+
stream.start_stream()
|
36 |
+
|
37 |
+
print("Say 'start listening' to begin transcription and 'stop listening' to stop.")
|
38 |
+
|
39 |
+
# State management
|
40 |
+
is_listening = False
|
41 |
+
|
42 |
+
try:
|
43 |
+
while True:
|
44 |
+
data = stream.read(4000, exception_on_overflow=False)
|
45 |
+
|
46 |
+
if recognizer.AcceptWaveform(data):
|
47 |
+
result = recognizer.Result()
|
48 |
+
text = json.loads(result)["text"]
|
49 |
+
|
50 |
+
# Check for commands to start or stop listening
|
51 |
+
if "start listening" in text.lower():
|
52 |
+
is_listening = True
|
53 |
+
print("Listening started. Speak into the microphone.")
|
54 |
+
continue
|
55 |
+
elif "stop listening" in text.lower():
|
56 |
+
is_listening = False
|
57 |
+
print("Listening stopped. Say 'start listening' to resume.")
|
58 |
+
continue
|
59 |
+
|
60 |
+
# Transcribe if actively listening
|
61 |
+
if is_listening:
|
62 |
+
print(f"Transcription: {text}")
|
63 |
+
else:
|
64 |
+
# Handle partial results if needed
|
65 |
+
chunk_result = recognizer.PartialResult()
|
66 |
+
chunk_text = json.loads(chunk_result)["partial"]
|
67 |
+
|
68 |
+
# Display partial transcription only if actively listening
|
69 |
+
if is_listening and chunk_text:
|
70 |
+
print(f"chunk: {chunk_text}", end="\r")
|
71 |
+
|
72 |
+
except KeyboardInterrupt:
|
73 |
+
print("\nExiting...")
|
74 |
+
stream.stop_stream()
|
75 |
+
stream.close()
|
76 |
+
audio.terminate()
|
utils.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
|
4 |
+
# Function to load environment variables from .env file
|
5 |
+
def load_env_variables():
|
6 |
+
# Load environment variables from .env file
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
# Return the loaded environment variables as a dictionary
|
10 |
+
return {
|
11 |
+
'assemblyai_api_key': os.getenv('ASSEMBLYAI_API_KEY'),
|
12 |
+
'huggingface_api_key': os.getenv('HUGGINGFACE_API_KEY'),
|
13 |
+
'google_creds': os.getenv('GOOGLE_CREDS_PATH'),
|
14 |
+
'google_sheet_id': os.getenv('GOOGLE_SHEET_ID')
|
15 |
+
}
|