ljy266987
add lfs
12bfd03
raw
history blame
18.5 kB
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import itertools
import os
import time
import argparse
import json
import torch
import torch.nn.functional as F
from torchaudio.transforms import MelSpectrogram
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
import torch.multiprocessing as mp
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from academicodec.models.hificodec.env import AttrDict, build_env
from academicodec.models.hificodec.meldataset import MelDataset, mel_spectrogram, get_dataset_filelist
from academicodec.models.encodec.msstftd import MultiScaleSTFTDiscriminator
from academicodec.models.hificodec.models import Generator
from academicodec.models.hificodec.models import MultiPeriodDiscriminator
from academicodec.models.hificodec.models import MultiScaleDiscriminator
from academicodec.models.hificodec.models import feature_loss
from academicodec.models.hificodec.models import generator_loss
from academicodec.models.hificodec.models import discriminator_loss
from academicodec.models.hificodec.models import Encoder
from academicodec.models.hificodec.models import Quantizer
from academicodec.utils import plot_spectrogram
from academicodec.utils import scan_checkpoint
from academicodec.utils import load_checkpoint
from academicodec.utils import save_checkpoint
torch.backends.cudnn.benchmark = True
def reconstruction_loss(x, G_x, device, eps=1e-7):
L = 100 * F.mse_loss(x, G_x) # wav L1 loss
for i in range(6, 11):
s = 2**i
melspec = MelSpectrogram(
sample_rate=24000,
n_fft=s,
hop_length=s // 4,
n_mels=64,
wkwargs={"device": device}).to(device)
# 64, 16, 64
# 128, 32, 128
# 256, 64, 256
# 512, 128, 512
# 1024, 256, 1024
S_x = melspec(x)
S_G_x = melspec(G_x)
loss = ((S_x - S_G_x).abs().mean() + (
((torch.log(S_x.abs() + eps) - torch.log(S_G_x.abs() + eps))**2
).mean(dim=-2)**0.5).mean()) / (i)
L += loss
#print('i ,loss ', i, loss)
#assert 1==2
return L
def train(rank, a, h):
torch.cuda.set_device(rank)
if h.num_gpus > 1:
init_process_group(
backend=h.dist_config['dist_backend'],
init_method=h.dist_config['dist_url'],
world_size=h.dist_config['world_size'] * h.num_gpus,
rank=rank)
torch.cuda.manual_seed(h.seed)
device = torch.device('cuda:{:d}'.format(rank))
encoder = Encoder(h).to(device)
generator = Generator(h).to(device)
quantizer = Quantizer(h).to(device)
mpd = MultiPeriodDiscriminator().to(device)
msd = MultiScaleDiscriminator().to(device)
mstftd = MultiScaleSTFTDiscriminator(32).to(device)
if rank == 0:
print(encoder)
print(quantizer)
print(generator)
os.makedirs(a.checkpoint_path, exist_ok=True)
print("checkpoints directory : ", a.checkpoint_path)
if os.path.isdir(a.checkpoint_path):
cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
cp_do = scan_checkpoint(a.checkpoint_path, 'do_')
steps = 0
if cp_g is None or cp_do is None:
state_dict_do = None
last_epoch = -1
else:
state_dict_g = load_checkpoint(cp_g, device)
state_dict_do = load_checkpoint(cp_do, device)
generator.load_state_dict(state_dict_g['generator'])
encoder.load_state_dict(state_dict_g['encoder'])
quantizer.load_state_dict(state_dict_g['quantizer'])
mpd.load_state_dict(state_dict_do['mpd'])
msd.load_state_dict(state_dict_do['msd'])
mstftd.load_state_dict(state_dict_do['mstftd'])
steps = state_dict_do['steps'] + 1
last_epoch = state_dict_do['epoch']
if h.num_gpus > 1:
generator = DistributedDataParallel(
generator, device_ids=[rank]).to(device)
encoder = DistributedDataParallel(encoder, device_ids=[rank]).to(device)
quantizer = DistributedDataParallel(
quantizer, device_ids=[rank]).to(device)
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)
mstftd = DistributedDataParallel(mstftd, device_ids=[rank]).to(device)
optim_g = torch.optim.Adam(
itertools.chain(generator.parameters(),
encoder.parameters(), quantizer.parameters()),
h.learning_rate,
betas=[h.adam_b1, h.adam_b2])
optim_d = torch.optim.Adam(
itertools.chain(msd.parameters(), mpd.parameters(),
mstftd.parameters()),
h.learning_rate,
betas=[h.adam_b1, h.adam_b2])
if state_dict_do is not None:
optim_g.load_state_dict(state_dict_do['optim_g'])
optim_d.load_state_dict(state_dict_do['optim_d'])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=h.lr_decay, last_epoch=last_epoch)
training_filelist, validation_filelist = get_dataset_filelist(a)
trainset = MelDataset(
training_filelist,
h.segment_size,
h.n_fft,
h.num_mels,
h.hop_size,
h.win_size,
h.sampling_rate,
h.fmin,
h.fmax,
n_cache_reuse=0,
shuffle=False if h.num_gpus > 1 else True,
fmax_loss=h.fmax_for_loss,
device=device,
fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir)
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
train_loader = DataLoader(
trainset,
num_workers=h.num_workers,
shuffle=False,
sampler=train_sampler,
batch_size=h.batch_size,
pin_memory=True,
drop_last=True)
if rank == 0:
validset = MelDataset(
validation_filelist,
h.segment_size,
h.n_fft,
h.num_mels,
h.hop_size,
h.win_size,
h.sampling_rate,
h.fmin,
h.fmax,
False,
False,
n_cache_reuse=0,
fmax_loss=h.fmax_for_loss,
device=device,
fine_tuning=a.fine_tuning,
base_mels_path=a.input_mels_dir)
validation_loader = DataLoader(
validset,
num_workers=1,
shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True)
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
plot_gt_once = False
generator.train()
encoder.train()
quantizer.train()
mpd.train()
msd.train()
for epoch in range(max(0, last_epoch), a.training_epochs):
if rank == 0:
start = time.time()
print("Epoch: {}".format(epoch + 1))
if h.num_gpus > 1:
train_sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader):
if rank == 0:
start_b = time.time()
x, y, _, y_mel = batch
x = torch.autograd.Variable(x.to(device, non_blocking=True))
y = torch.autograd.Variable(y.to(device, non_blocking=True))
y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True))
y = y.unsqueeze(1)
c = encoder(y)
# print("c.shape: ", c.shape)
q, loss_q, c = quantizer(c)
# print("q.shape: ", q.shape)
y_g_hat = generator(q)
y_g_hat_mel = mel_spectrogram(
y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
h.hop_size, h.win_size, h.fmin,
h.fmax_for_loss) # 1024, 80, 24000, 240,1024
y_r_mel_1 = mel_spectrogram(
y.squeeze(1), 512, h.num_mels, h.sampling_rate, 120, 512,
h.fmin, h.fmax_for_loss)
y_g_mel_1 = mel_spectrogram(
y_g_hat.squeeze(1), 512, h.num_mels, h.sampling_rate, 120, 512,
h.fmin, h.fmax_for_loss)
y_r_mel_2 = mel_spectrogram(
y.squeeze(1), 256, h.num_mels, h.sampling_rate, 60, 256, h.fmin,
h.fmax_for_loss)
y_g_mel_2 = mel_spectrogram(
y_g_hat.squeeze(1), 256, h.num_mels, h.sampling_rate, 60, 256,
h.fmin, h.fmax_for_loss)
y_r_mel_3 = mel_spectrogram(
y.squeeze(1), 128, h.num_mels, h.sampling_rate, 30, 128, h.fmin,
h.fmax_for_loss)
y_g_mel_3 = mel_spectrogram(
y_g_hat.squeeze(1), 128, h.num_mels, h.sampling_rate, 30, 128,
h.fmin, h.fmax_for_loss)
# print("x.shape: ", x.shape)
# print("y.shape: ", y.shape)
# print("y_g_hat.shape: ", y_g_hat.shape)
optim_d.zero_grad()
# MPD
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
y_df_hat_r, y_df_hat_g)
# MSD
y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
y_ds_hat_r, y_ds_hat_g)
y_disc_r, fmap_r = mstftd(y)
y_disc_gen, fmap_gen = mstftd(y_g_hat.detach())
loss_disc_stft, losses_disc_stft_r, losses_disc_stft_g = discriminator_loss(
y_disc_r, y_disc_gen)
loss_disc_all = loss_disc_s + loss_disc_f + loss_disc_stft
loss_disc_all.backward()
optim_d.step()
# Generator
optim_g.zero_grad()
# L1 Mel-Spectrogram Loss
loss_mel1 = F.l1_loss(y_r_mel_1, y_g_mel_1)
loss_mel2 = F.l1_loss(y_r_mel_2, y_g_mel_2)
loss_mel3 = F.l1_loss(y_r_mel_3, y_g_mel_3)
#print('loss_mel1, loss_mel2 ', loss_mel1, loss_mel2)
loss_mel = F.l1_loss(y_mel,
y_g_hat_mel) * 45 + loss_mel1 + loss_mel2
# print('loss_mel ', loss_mel)
# assert 1==2
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
y_stftd_hat_r, fmap_stftd_r = mstftd(y)
y_stftd_hat_g, fmap_stftd_g = mstftd(y_g_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_fm_stft = feature_loss(fmap_stftd_r, fmap_stftd_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
loss_gen_stft, losses_gen_stft = generator_loss(y_stftd_hat_g)
loss_gen_all = loss_gen_s + loss_gen_f + loss_gen_stft + loss_fm_s + loss_fm_f + loss_fm_stft + loss_mel + loss_q * 10
loss_gen_all.backward()
optim_g.step()
if rank == 0:
# STDOUT logging
if steps % a.stdout_interval == 0:
with torch.no_grad():
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()
print(
'Steps : {:d}, Gen Loss Total : {:4.3f}, Loss Q : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'.
format(steps, loss_gen_all, loss_q, mel_error,
time.time() - start_b))
# checkpointing
if steps % a.checkpoint_interval == 0 and steps != 0:
checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path,
steps)
save_checkpoint(
checkpoint_path, {
'generator': (generator.module if h.num_gpus > 1
else generator).state_dict(),
'encoder': (encoder.module if h.num_gpus > 1 else
encoder).state_dict(),
'quantizer': (quantizer.module if h.num_gpus > 1
else quantizer).state_dict()
},
num_ckpt_keep=a.num_ckpt_keep)
checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path,
steps)
save_checkpoint(
checkpoint_path, {
'mpd': (mpd.module
if h.num_gpus > 1 else mpd).state_dict(),
'msd': (msd.module
if h.num_gpus > 1 else msd).state_dict(),
'mstftd': (mstftd.module
if h.num_gpus > 1 else msd).state_dict(),
'optim_g':
optim_g.state_dict(),
'optim_d':
optim_d.state_dict(),
'steps':
steps,
'epoch':
epoch
},
num_ckpt_keep=a.num_ckpt_keep)
# Tensorboard summary logging
if steps % a.summary_interval == 0:
sw.add_scalar("training/gen_loss_total", loss_gen_all,
steps)
sw.add_scalar("training/mel_spec_error", mel_error, steps)
# Validation
if steps % a.validation_interval == 0 and steps != 0:
generator.eval()
encoder.eval()
quantizer.eval()
torch.cuda.empty_cache()
val_err_tot = 0
with torch.no_grad():
for j, batch in enumerate(validation_loader):
x, y, _, y_mel = batch
c = encoder(y.to(device).unsqueeze(1))
q, loss_q, c = quantizer(c)
y_g_hat = generator(q)
y_mel = torch.autograd.Variable(y_mel.to(device))
y_g_hat_mel = mel_spectrogram(
y_g_hat.squeeze(1), h.n_fft, h.num_mels,
h.sampling_rate, h.hop_size, h.win_size, h.fmin,
h.fmax_for_loss)
i_size = min(y_mel.size(2), y_g_hat_mel.size(2))
val_err_tot += F.l1_loss(
y_mel[:, :, :i_size],
y_g_hat_mel[:, :, :i_size]).item()
if j <= 8:
# if steps == 0:
if not plot_gt_once:
sw.add_audio('gt/y_{}'.format(j), y[0],
steps, h.sampling_rate)
sw.add_figure('gt/y_spec_{}'.format(j),
plot_spectrogram(x[0]), steps)
sw.add_audio('generated/y_hat_{}'.format(j),
y_g_hat[0], steps, h.sampling_rate)
y_hat_spec = mel_spectrogram(
y_g_hat.squeeze(1), h.n_fft, h.num_mels,
h.sampling_rate, h.hop_size, h.win_size,
h.fmin, h.fmax)
sw.add_figure(
'generated/y_hat_spec_{}'.format(j),
plot_spectrogram(
y_hat_spec.squeeze(0).cpu().numpy()),
steps)
val_err = val_err_tot / (j + 1)
sw.add_scalar("validation/mel_spec_error", val_err,
steps)
if not plot_gt_once:
plot_gt_once = True
generator.train()
steps += 1
scheduler_g.step()
scheduler_d.step()
if rank == 0:
print('Time taken for epoch {} is {} sec\n'.format(
epoch + 1, int(time.time() - start)))
def main():
print('Initializing Training Process..')
parser = argparse.ArgumentParser()
# parser.add_argument('--group_name', default=None)
# parser.add_argument('--input_wavs_dir', default='../datasets/audios')
parser.add_argument('--input_mels_dir', default=None)
parser.add_argument('--input_training_file', required=True)
parser.add_argument('--input_validation_file', required=True)
parser.add_argument('--checkpoint_path', default='checkpoints')
parser.add_argument('--config', default='')
parser.add_argument('--training_epochs', default=2000, type=int)
parser.add_argument('--stdout_interval', default=5, type=int)
parser.add_argument('--checkpoint_interval', default=5000, type=int)
parser.add_argument('--summary_interval', default=100, type=int)
parser.add_argument('--validation_interval', default=5000, type=int)
parser.add_argument('--num_ckpt_keep', default=5, type=int)
parser.add_argument('--fine_tuning', default=False, type=bool)
a = parser.parse_args()
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, 'config.json', a.checkpoint_path)
torch.manual_seed(h.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
h.num_gpus = torch.cuda.device_count()
h.batch_size = int(h.batch_size / h.num_gpus)
print('Batch size per GPU :', h.batch_size)
else:
pass
if h.num_gpus > 1:
mp.spawn(train, nprocs=h.num_gpus, args=(a, h, ))
else:
train(0, a, h)
if __name__ == '__main__':
main()