File size: 18,466 Bytes
12bfd03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import itertools
import os
import time
import argparse
import json
import torch
import torch.nn.functional as F
from torchaudio.transforms import MelSpectrogram
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
import torch.multiprocessing as mp
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel

from academicodec.models.hificodec.env import AttrDict, build_env
from academicodec.models.hificodec.meldataset import MelDataset, mel_spectrogram, get_dataset_filelist
from academicodec.models.encodec.msstftd import MultiScaleSTFTDiscriminator
from academicodec.models.hificodec.models import Generator
from academicodec.models.hificodec.models import MultiPeriodDiscriminator
from academicodec.models.hificodec.models import MultiScaleDiscriminator
from academicodec.models.hificodec.models import feature_loss
from academicodec.models.hificodec.models import generator_loss
from academicodec.models.hificodec.models import discriminator_loss
from academicodec.models.hificodec.models import Encoder
from academicodec.models.hificodec.models import Quantizer
from academicodec.utils import plot_spectrogram
from academicodec.utils import scan_checkpoint
from academicodec.utils import load_checkpoint
from academicodec.utils import save_checkpoint

torch.backends.cudnn.benchmark = True


def reconstruction_loss(x, G_x, device, eps=1e-7):
    L = 100 * F.mse_loss(x, G_x)  # wav L1 loss
    for i in range(6, 11):
        s = 2**i
        melspec = MelSpectrogram(
            sample_rate=24000,
            n_fft=s,
            hop_length=s // 4,
            n_mels=64,
            wkwargs={"device": device}).to(device)
        # 64, 16, 64
        # 128, 32, 128
        # 256, 64, 256
        # 512, 128, 512
        # 1024, 256, 1024
        S_x = melspec(x)
        S_G_x = melspec(G_x)
        loss = ((S_x - S_G_x).abs().mean() + (
            ((torch.log(S_x.abs() + eps) - torch.log(S_G_x.abs() + eps))**2
             ).mean(dim=-2)**0.5).mean()) / (i)
        L += loss
        #print('i ,loss ', i, loss)
    #assert 1==2
    return L


def train(rank, a, h):
    torch.cuda.set_device(rank)
    if h.num_gpus > 1:
        init_process_group(
            backend=h.dist_config['dist_backend'],
            init_method=h.dist_config['dist_url'],
            world_size=h.dist_config['world_size'] * h.num_gpus,
            rank=rank)

    torch.cuda.manual_seed(h.seed)
    device = torch.device('cuda:{:d}'.format(rank))

    encoder = Encoder(h).to(device)
    generator = Generator(h).to(device)
    quantizer = Quantizer(h).to(device)
    mpd = MultiPeriodDiscriminator().to(device)
    msd = MultiScaleDiscriminator().to(device)
    mstftd = MultiScaleSTFTDiscriminator(32).to(device)
    if rank == 0:
        print(encoder)
        print(quantizer)
        print(generator)
        os.makedirs(a.checkpoint_path, exist_ok=True)
        print("checkpoints directory : ", a.checkpoint_path)

    if os.path.isdir(a.checkpoint_path):
        cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
        cp_do = scan_checkpoint(a.checkpoint_path, 'do_')

    steps = 0
    if cp_g is None or cp_do is None:
        state_dict_do = None
        last_epoch = -1
    else:
        state_dict_g = load_checkpoint(cp_g, device)
        state_dict_do = load_checkpoint(cp_do, device)
        generator.load_state_dict(state_dict_g['generator'])
        encoder.load_state_dict(state_dict_g['encoder'])
        quantizer.load_state_dict(state_dict_g['quantizer'])
        mpd.load_state_dict(state_dict_do['mpd'])
        msd.load_state_dict(state_dict_do['msd'])
        mstftd.load_state_dict(state_dict_do['mstftd'])
        steps = state_dict_do['steps'] + 1
        last_epoch = state_dict_do['epoch']

    if h.num_gpus > 1:
        generator = DistributedDataParallel(
            generator, device_ids=[rank]).to(device)
        encoder = DistributedDataParallel(encoder, device_ids=[rank]).to(device)
        quantizer = DistributedDataParallel(
            quantizer, device_ids=[rank]).to(device)
        mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
        msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)
        mstftd = DistributedDataParallel(mstftd, device_ids=[rank]).to(device)

    optim_g = torch.optim.Adam(
        itertools.chain(generator.parameters(),
                        encoder.parameters(), quantizer.parameters()),
        h.learning_rate,
        betas=[h.adam_b1, h.adam_b2])
    optim_d = torch.optim.Adam(
        itertools.chain(msd.parameters(), mpd.parameters(),
                        mstftd.parameters()),
        h.learning_rate,
        betas=[h.adam_b1, h.adam_b2])
    if state_dict_do is not None:
        optim_g.load_state_dict(state_dict_do['optim_g'])
        optim_d.load_state_dict(state_dict_do['optim_d'])

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
        optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
        optim_d, gamma=h.lr_decay, last_epoch=last_epoch)

    training_filelist, validation_filelist = get_dataset_filelist(a)

    trainset = MelDataset(
        training_filelist,
        h.segment_size,
        h.n_fft,
        h.num_mels,
        h.hop_size,
        h.win_size,
        h.sampling_rate,
        h.fmin,
        h.fmax,
        n_cache_reuse=0,
        shuffle=False if h.num_gpus > 1 else True,
        fmax_loss=h.fmax_for_loss,
        device=device,
        fine_tuning=a.fine_tuning,
        base_mels_path=a.input_mels_dir)

    train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None

    train_loader = DataLoader(
        trainset,
        num_workers=h.num_workers,
        shuffle=False,
        sampler=train_sampler,
        batch_size=h.batch_size,
        pin_memory=True,
        drop_last=True)

    if rank == 0:
        validset = MelDataset(
            validation_filelist,
            h.segment_size,
            h.n_fft,
            h.num_mels,
            h.hop_size,
            h.win_size,
            h.sampling_rate,
            h.fmin,
            h.fmax,
            False,
            False,
            n_cache_reuse=0,
            fmax_loss=h.fmax_for_loss,
            device=device,
            fine_tuning=a.fine_tuning,
            base_mels_path=a.input_mels_dir)
        validation_loader = DataLoader(
            validset,
            num_workers=1,
            shuffle=False,
            sampler=None,
            batch_size=1,
            pin_memory=True,
            drop_last=True)
        sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
    plot_gt_once = False
    generator.train()
    encoder.train()
    quantizer.train()
    mpd.train()
    msd.train()
    for epoch in range(max(0, last_epoch), a.training_epochs):
        if rank == 0:
            start = time.time()
            print("Epoch: {}".format(epoch + 1))
        if h.num_gpus > 1:
            train_sampler.set_epoch(epoch)
        for i, batch in enumerate(train_loader):
            if rank == 0:
                start_b = time.time()
            x, y, _, y_mel = batch
            x = torch.autograd.Variable(x.to(device, non_blocking=True))
            y = torch.autograd.Variable(y.to(device, non_blocking=True))
            y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True))
            y = y.unsqueeze(1)

            c = encoder(y)
            # print("c.shape: ", c.shape)
            q, loss_q, c = quantizer(c)
            # print("q.shape: ", q.shape)
            y_g_hat = generator(q)
            y_g_hat_mel = mel_spectrogram(
                y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
                h.hop_size, h.win_size, h.fmin,
                h.fmax_for_loss)  # 1024, 80, 24000, 240,1024
            y_r_mel_1 = mel_spectrogram(
                y.squeeze(1), 512, h.num_mels, h.sampling_rate, 120, 512,
                h.fmin, h.fmax_for_loss)
            y_g_mel_1 = mel_spectrogram(
                y_g_hat.squeeze(1), 512, h.num_mels, h.sampling_rate, 120, 512,
                h.fmin, h.fmax_for_loss)
            y_r_mel_2 = mel_spectrogram(
                y.squeeze(1), 256, h.num_mels, h.sampling_rate, 60, 256, h.fmin,
                h.fmax_for_loss)
            y_g_mel_2 = mel_spectrogram(
                y_g_hat.squeeze(1), 256, h.num_mels, h.sampling_rate, 60, 256,
                h.fmin, h.fmax_for_loss)
            y_r_mel_3 = mel_spectrogram(
                y.squeeze(1), 128, h.num_mels, h.sampling_rate, 30, 128, h.fmin,
                h.fmax_for_loss)
            y_g_mel_3 = mel_spectrogram(
                y_g_hat.squeeze(1), 128, h.num_mels, h.sampling_rate, 30, 128,
                h.fmin, h.fmax_for_loss)
            # print("x.shape: ", x.shape)
            # print("y.shape: ", y.shape)
            # print("y_g_hat.shape: ", y_g_hat.shape)
            optim_d.zero_grad()

            # MPD
            y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
            loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
                y_df_hat_r, y_df_hat_g)

            # MSD
            y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
            loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
                y_ds_hat_r, y_ds_hat_g)

            y_disc_r, fmap_r = mstftd(y)
            y_disc_gen, fmap_gen = mstftd(y_g_hat.detach())
            loss_disc_stft, losses_disc_stft_r, losses_disc_stft_g = discriminator_loss(
                y_disc_r, y_disc_gen)
            loss_disc_all = loss_disc_s + loss_disc_f + loss_disc_stft

            loss_disc_all.backward()
            optim_d.step()

            # Generator
            optim_g.zero_grad()

            # L1 Mel-Spectrogram Loss
            loss_mel1 = F.l1_loss(y_r_mel_1, y_g_mel_1)
            loss_mel2 = F.l1_loss(y_r_mel_2, y_g_mel_2)
            loss_mel3 = F.l1_loss(y_r_mel_3, y_g_mel_3)
            #print('loss_mel1, loss_mel2 ', loss_mel1, loss_mel2)
            loss_mel = F.l1_loss(y_mel,
                                 y_g_hat_mel) * 45 + loss_mel1 + loss_mel2
            # print('loss_mel ', loss_mel)
            # assert 1==2
            y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
            y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
            y_stftd_hat_r, fmap_stftd_r = mstftd(y)
            y_stftd_hat_g, fmap_stftd_g = mstftd(y_g_hat)
            loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
            loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
            loss_fm_stft = feature_loss(fmap_stftd_r, fmap_stftd_g)
            loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
            loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
            loss_gen_stft, losses_gen_stft = generator_loss(y_stftd_hat_g)
            loss_gen_all = loss_gen_s + loss_gen_f + loss_gen_stft + loss_fm_s + loss_fm_f + loss_fm_stft + loss_mel + loss_q * 10
            loss_gen_all.backward()
            optim_g.step()
            if rank == 0:
                # STDOUT logging
                if steps % a.stdout_interval == 0:
                    with torch.no_grad():
                        mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()
                    print(
                        'Steps : {:d}, Gen Loss Total : {:4.3f}, Loss Q : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'.
                        format(steps, loss_gen_all, loss_q, mel_error,
                               time.time() - start_b))
                # checkpointing
                if steps % a.checkpoint_interval == 0 and steps != 0:
                    checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path,
                                                           steps)
                    save_checkpoint(
                        checkpoint_path, {
                            'generator': (generator.module if h.num_gpus > 1
                                          else generator).state_dict(),
                            'encoder': (encoder.module if h.num_gpus > 1 else
                                        encoder).state_dict(),
                            'quantizer': (quantizer.module if h.num_gpus > 1
                                          else quantizer).state_dict()
                        },
                        num_ckpt_keep=a.num_ckpt_keep)
                    checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path,
                                                            steps)
                    save_checkpoint(
                        checkpoint_path, {
                            'mpd': (mpd.module
                                    if h.num_gpus > 1 else mpd).state_dict(),
                            'msd': (msd.module
                                    if h.num_gpus > 1 else msd).state_dict(),
                            'mstftd': (mstftd.module
                                       if h.num_gpus > 1 else msd).state_dict(),
                            'optim_g':
                            optim_g.state_dict(),
                            'optim_d':
                            optim_d.state_dict(),
                            'steps':
                            steps,
                            'epoch':
                            epoch
                        },
                        num_ckpt_keep=a.num_ckpt_keep)
                # Tensorboard summary logging
                if steps % a.summary_interval == 0:
                    sw.add_scalar("training/gen_loss_total", loss_gen_all,
                                  steps)
                    sw.add_scalar("training/mel_spec_error", mel_error, steps)

                # Validation
                if steps % a.validation_interval == 0 and steps != 0:
                    generator.eval()
                    encoder.eval()
                    quantizer.eval()
                    torch.cuda.empty_cache()
                    val_err_tot = 0
                    with torch.no_grad():
                        for j, batch in enumerate(validation_loader):
                            x, y, _, y_mel = batch
                            c = encoder(y.to(device).unsqueeze(1))
                            q, loss_q, c = quantizer(c)
                            y_g_hat = generator(q)
                            y_mel = torch.autograd.Variable(y_mel.to(device))
                            y_g_hat_mel = mel_spectrogram(
                                y_g_hat.squeeze(1), h.n_fft, h.num_mels,
                                h.sampling_rate, h.hop_size, h.win_size, h.fmin,
                                h.fmax_for_loss)
                            i_size = min(y_mel.size(2), y_g_hat_mel.size(2))
                            val_err_tot += F.l1_loss(
                                y_mel[:, :, :i_size],
                                y_g_hat_mel[:, :, :i_size]).item()

                            if j <= 8:
                                # if steps == 0:
                                if not plot_gt_once:
                                    sw.add_audio('gt/y_{}'.format(j), y[0],
                                                 steps, h.sampling_rate)
                                    sw.add_figure('gt/y_spec_{}'.format(j),
                                                  plot_spectrogram(x[0]), steps)

                                sw.add_audio('generated/y_hat_{}'.format(j),
                                             y_g_hat[0], steps, h.sampling_rate)
                                y_hat_spec = mel_spectrogram(
                                    y_g_hat.squeeze(1), h.n_fft, h.num_mels,
                                    h.sampling_rate, h.hop_size, h.win_size,
                                    h.fmin, h.fmax)
                                sw.add_figure(
                                    'generated/y_hat_spec_{}'.format(j),
                                    plot_spectrogram(
                                        y_hat_spec.squeeze(0).cpu().numpy()),
                                    steps)

                        val_err = val_err_tot / (j + 1)
                        sw.add_scalar("validation/mel_spec_error", val_err,
                                      steps)
                        if not plot_gt_once:
                            plot_gt_once = True

                    generator.train()

            steps += 1

        scheduler_g.step()
        scheduler_d.step()

        if rank == 0:
            print('Time taken for epoch {} is {} sec\n'.format(
                epoch + 1, int(time.time() - start)))


def main():
    print('Initializing Training Process..')

    parser = argparse.ArgumentParser()

    # parser.add_argument('--group_name', default=None)
    # parser.add_argument('--input_wavs_dir', default='../datasets/audios')
    parser.add_argument('--input_mels_dir', default=None)
    parser.add_argument('--input_training_file', required=True)
    parser.add_argument('--input_validation_file', required=True)
    parser.add_argument('--checkpoint_path', default='checkpoints')
    parser.add_argument('--config', default='')
    parser.add_argument('--training_epochs', default=2000, type=int)
    parser.add_argument('--stdout_interval', default=5, type=int)
    parser.add_argument('--checkpoint_interval', default=5000, type=int)
    parser.add_argument('--summary_interval', default=100, type=int)
    parser.add_argument('--validation_interval', default=5000, type=int)
    parser.add_argument('--num_ckpt_keep', default=5, type=int)
    parser.add_argument('--fine_tuning', default=False, type=bool)

    a = parser.parse_args()

    with open(a.config) as f:
        data = f.read()

    json_config = json.loads(data)
    h = AttrDict(json_config)
    build_env(a.config, 'config.json', a.checkpoint_path)

    torch.manual_seed(h.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(h.seed)
        h.num_gpus = torch.cuda.device_count()
        h.batch_size = int(h.batch_size / h.num_gpus)
        print('Batch size per GPU :', h.batch_size)
    else:
        pass

    if h.num_gpus > 1:
        mp.spawn(train, nprocs=h.num_gpus, args=(a, h, ))
    else:
        train(0, a, h)


if __name__ == '__main__':
    main()