ljy266987
add lfs
12bfd03
raw
history blame
4.99 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from academicodec.modules import NormConv1d
from academicodec.modules import NormConv2d
from academicodec.utils import get_padding
from torch.nn import AvgPool1d
from torch.nn.utils import spectral_norm
from torch.nn.utils import weight_norm
LRELU_SLOPE = 0.1
class DiscriminatorP(torch.nn.Module):
def __init__(self,
period,
kernel_size=5,
stride=3,
use_spectral_norm=False,
activation: str='LeakyReLU',
activation_params: dict={'negative_slope': 0.2}):
super(DiscriminatorP, self).__init__()
self.period = period
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.activation = getattr(torch.nn, activation)(**activation_params)
self.convs = nn.ModuleList([
NormConv2d(
1,
32, (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0)),
NormConv2d(
32,
32, (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0)),
NormConv2d(
32,
32, (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0)),
NormConv2d(
32,
32, (kernel_size, 1), (stride, 1),
padding=(get_padding(5, 1), 0)),
NormConv2d(32, 32, (kernel_size, 1), 1, padding=(2, 0)),
])
self.conv_post = NormConv2d(32, 1, (3, 1), 1, padding=(1, 0))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = self.activation(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self):
super(MultiPeriodDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorP(2),
DiscriminatorP(3),
DiscriminatorP(5),
DiscriminatorP(7),
DiscriminatorP(11),
])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(torch.nn.Module):
def __init__(self,
use_spectral_norm=False,
activation: str='LeakyReLU',
activation_params: dict={'negative_slope': 0.2}):
super(DiscriminatorS, self).__init__()
self.activation = getattr(torch.nn, activation)(**activation_params)
self.convs = nn.ModuleList([
NormConv1d(1, 32, 15, 1, padding=7),
NormConv1d(32, 32, 41, 2, groups=4, padding=20),
NormConv1d(32, 32, 41, 2, groups=16, padding=20),
NormConv1d(32, 32, 41, 4, groups=16, padding=20),
NormConv1d(32, 32, 41, 4, groups=16, padding=20),
NormConv1d(32, 32, 41, 1, groups=16, padding=20),
NormConv1d(32, 32, 5, 1, padding=2),
])
self.conv_post = NormConv1d(32, 1, 3, 1, padding=1)
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = self.activation(x)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiScaleDiscriminator(torch.nn.Module):
def __init__(self):
super(MultiScaleDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorS(),
DiscriminatorS(),
DiscriminatorS(),
])
self.meanpools = nn.ModuleList(
[AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if i != 0:
y = self.meanpools[i - 1](y)
y_hat = self.meanpools[i - 1](y_hat)
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs