File size: 4,993 Bytes
12bfd03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.nn as nn
import torch.nn.functional as F
from academicodec.modules import NormConv1d
from academicodec.modules import NormConv2d
from academicodec.utils import get_padding
from torch.nn import AvgPool1d
from torch.nn.utils import spectral_norm
from torch.nn.utils import weight_norm

LRELU_SLOPE = 0.1


class DiscriminatorP(torch.nn.Module):
    def __init__(self,
                 period,
                 kernel_size=5,
                 stride=3,
                 use_spectral_norm=False,
                 activation: str='LeakyReLU',
                 activation_params: dict={'negative_slope': 0.2}):
        super(DiscriminatorP, self).__init__()
        self.period = period
        norm_f = weight_norm if use_spectral_norm is False else spectral_norm
        self.activation = getattr(torch.nn, activation)(**activation_params)
        self.convs = nn.ModuleList([
            NormConv2d(
                1,
                32, (kernel_size, 1), (stride, 1),
                padding=(get_padding(5, 1), 0)),
            NormConv2d(
                32,
                32, (kernel_size, 1), (stride, 1),
                padding=(get_padding(5, 1), 0)),
            NormConv2d(
                32,
                32, (kernel_size, 1), (stride, 1),
                padding=(get_padding(5, 1), 0)),
            NormConv2d(
                32,
                32, (kernel_size, 1), (stride, 1),
                padding=(get_padding(5, 1), 0)),
            NormConv2d(32, 32, (kernel_size, 1), 1, padding=(2, 0)),
        ])
        self.conv_post = NormConv2d(32, 1, (3, 1), 1, padding=(1, 0))

    def forward(self, x):
        fmap = []
        # 1d to 2d
        b, c, t = x.shape
        if t % self.period != 0:  # pad first
            n_pad = self.period - (t % self.period)
            x = F.pad(x, (0, n_pad), "reflect")
            t = t + n_pad
        x = x.view(b, c, t // self.period, self.period)

        for l in self.convs:
            x = l(x)
            x = self.activation(x)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class MultiPeriodDiscriminator(torch.nn.Module):
    def __init__(self):
        super(MultiPeriodDiscriminator, self).__init__()
        self.discriminators = nn.ModuleList([
            DiscriminatorP(2),
            DiscriminatorP(3),
            DiscriminatorP(5),
            DiscriminatorP(7),
            DiscriminatorP(11),
        ])

    def forward(self, y, y_hat):
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            y_d_rs.append(y_d_r)
            fmap_rs.append(fmap_r)
            y_d_gs.append(y_d_g)
            fmap_gs.append(fmap_g)
        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class DiscriminatorS(torch.nn.Module):
    def __init__(self,
                 use_spectral_norm=False,
                 activation: str='LeakyReLU',
                 activation_params: dict={'negative_slope': 0.2}):
        super(DiscriminatorS, self).__init__()
        self.activation = getattr(torch.nn, activation)(**activation_params)
        self.convs = nn.ModuleList([
            NormConv1d(1, 32, 15, 1, padding=7),
            NormConv1d(32, 32, 41, 2, groups=4, padding=20),
            NormConv1d(32, 32, 41, 2, groups=16, padding=20),
            NormConv1d(32, 32, 41, 4, groups=16, padding=20),
            NormConv1d(32, 32, 41, 4, groups=16, padding=20),
            NormConv1d(32, 32, 41, 1, groups=16, padding=20),
            NormConv1d(32, 32, 5, 1, padding=2),
        ])
        self.conv_post = NormConv1d(32, 1, 3, 1, padding=1)

    def forward(self, x):
        fmap = []
        for l in self.convs:
            x = l(x)
            x = self.activation(x)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)
        return x, fmap


class MultiScaleDiscriminator(torch.nn.Module):
    def __init__(self):
        super(MultiScaleDiscriminator, self).__init__()
        self.discriminators = nn.ModuleList([
            DiscriminatorS(),
            DiscriminatorS(),
            DiscriminatorS(),
        ])
        self.meanpools = nn.ModuleList(
            [AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)])

    def forward(self, y, y_hat):
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            if i != 0:
                y = self.meanpools[i - 1](y)
                y_hat = self.meanpools[i - 1](y_hat)
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            y_d_rs.append(y_d_r)
            fmap_rs.append(fmap_r)
            y_d_gs.append(y_d_g)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs