Spaces:
Sleeping
Sleeping
File size: 1,554 Bytes
c84a366 c1a62ed c84a366 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import requests
import torch
# Periksa apakah GPU tersedia dan pilih perangkat GPU jika ada
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Step 1: Download the YOLO model from Hugging Face
url = 'https://huggingface.co/Yudsky/pest-detection-yolo11/resolve/main/best.pt'
model_path = 'best.pt'
# Check if the model file already exists, if not, download it
if not os.path.exists(model_path):
print("Downloading the model...")
response = requests.get(url)
with open(model_path, 'wb') as f:
f.write(response.content)
print("Download completed.")
# Step 2: Load the model using YOLO from ultralytics
# print("Loading the model...")
model = YOLO(model_path)
# print("Model loaded successfully.")
# Step 3: Define the prediction functions for images and videos
def predict_image(image):
# Run inference
results = model(image, device=device)
# Plot results on the image
annotated_image = results[0].plot() # Get the annotated image with bounding boxes
return Image.fromarray(annotated_image)
inputs_image = [
gr.Image(type='filepath', label='input image')
]
outputs_image = [
gr.Image(type='numpy', label='output image')
]
# Step 4: Define the Gradio Interface
interface_image = gr.Interface(
fn=predict_image,
inputs=inputs_image,
outputs=outputs_image,
title="Pest Detection",
description="Upload an image and the model will detect pests."
)
# Step 5: Launch the interface
interface_image.launch() |