Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
# Periksa apakah GPU tersedia dan pilih perangkat GPU jika ada
|
7 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
8 |
+
|
9 |
+
# Step 1: Download the YOLO model from Hugging Face
|
10 |
+
url = 'https://huggingface.co/Yudsky/pest-detection-yolo11/resolve/main/best.pt'
|
11 |
+
model_path = 'best.pt'
|
12 |
+
|
13 |
+
# Check if the model file already exists, if not, download it
|
14 |
+
if not os.path.exists(model_path):
|
15 |
+
print("Downloading the model...")
|
16 |
+
response = requests.get(url)
|
17 |
+
with open(model_path, 'wb') as f:
|
18 |
+
f.write(response.content)
|
19 |
+
print("Download completed.")
|
20 |
+
|
21 |
+
# Step 2: Load the model using YOLO from ultralytics
|
22 |
+
# print("Loading the model...")
|
23 |
+
model = YOLO(model_path)
|
24 |
+
# print("Model loaded successfully.")
|
25 |
+
|
26 |
+
# Step 3: Define the prediction functions for images and videos
|
27 |
+
def predict_image(image):
|
28 |
+
# Run inference
|
29 |
+
results = model(image, device=device)
|
30 |
+
# Plot results on the image
|
31 |
+
annotated_image = results[0].plot() # Get the annotated image with bounding boxes
|
32 |
+
return Image.fromarray(annotated_image)
|
33 |
+
|
34 |
+
inputs_image = [
|
35 |
+
gr.Image(type='filepath', label='input image')
|
36 |
+
]
|
37 |
+
outputs_image = [
|
38 |
+
gr.Image(type='numpy', label='output image')
|
39 |
+
]
|
40 |
+
|
41 |
+
# Step 4: Define the Gradio Interface
|
42 |
+
interface_image = gr.Interface(
|
43 |
+
fn=predict_image,
|
44 |
+
inputs=inputs_image,
|
45 |
+
outputs=outputs_image,
|
46 |
+
title="Pest Detection",
|
47 |
+
description="Upload an image and the model will detect pests."
|
48 |
+
)
|
49 |
+
|
50 |
+
# Step 5: Launch the interface
|
51 |
+
interface_image.launch()
|