Spaces:
Build error
Build error
# Original source taken from https://github.com/LiyuanLucasLiu/RAdam | |
# | |
# Copyright 2019 Liyuan Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import torch | |
# pylint: disable=no-name-in-module | |
from torch.optim.optimizer import Optimizer | |
class RAdam(Optimizer): | |
"""RAdam optimizer""" | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): | |
""" | |
Init | |
:param params: parameters to optimize | |
:param lr: learning rate | |
:param betas: beta | |
:param eps: numerical precision | |
:param weight_decay: weight decay weight | |
""" | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) | |
self.buffer = [[None, None, None] for _ in range(10)] | |
super().__init__(params, defaults) | |
def step(self, closure=None): | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
grad = p.grad.data.float() | |
if grad.is_sparse: | |
raise RuntimeError("RAdam does not support sparse gradients") | |
p_data_fp32 = p.data.float() | |
state = self.state[p] | |
if len(state) == 0: | |
state["step"] = 0 | |
state["exp_avg"] = torch.zeros_like(p_data_fp32) | |
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) | |
else: | |
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32) | |
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32) | |
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] | |
beta1, beta2 = group["betas"] | |
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
exp_avg.mul_(beta1).add_(1 - beta1, grad) | |
state["step"] += 1 | |
buffered = self.buffer[int(state["step"] % 10)] | |
if state["step"] == buffered[0]: | |
N_sma, step_size = buffered[1], buffered[2] | |
else: | |
buffered[0] = state["step"] | |
beta2_t = beta2 ** state["step"] | |
N_sma_max = 2 / (1 - beta2) - 1 | |
N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t) | |
buffered[1] = N_sma | |
# more conservative since it's an approximated value | |
if N_sma >= 5: | |
step_size = ( | |
group["lr"] | |
* math.sqrt( | |
(1 - beta2_t) | |
* (N_sma - 4) | |
/ (N_sma_max - 4) | |
* (N_sma - 2) | |
/ N_sma | |
* N_sma_max | |
/ (N_sma_max - 2) | |
) | |
/ (1 - beta1 ** state["step"]) | |
) | |
else: | |
step_size = group["lr"] / (1 - beta1 ** state["step"]) | |
buffered[2] = step_size | |
if group["weight_decay"] != 0: | |
p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32) | |
# more conservative since it's an approximated value | |
if N_sma >= 5: | |
denom = exp_avg_sq.sqrt().add_(group["eps"]) | |
p_data_fp32.addcdiv_(-step_size, exp_avg, denom) | |
else: | |
p_data_fp32.add_(-step_size, exp_avg) | |
p.data.copy_(p_data_fp32) | |
return loss | |