# Original source taken from https://github.com/LiyuanLucasLiu/RAdam # # Copyright 2019 Liyuan Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch # pylint: disable=no-name-in-module from torch.optim.optimizer import Optimizer class RAdam(Optimizer): """RAdam optimizer""" def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): """ Init :param params: parameters to optimize :param lr: learning rate :param betas: beta :param eps: numerical precision :param weight_decay: weight decay weight """ defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.buffer = [[None, None, None] for _ in range(10)] super().__init__(params, defaults) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError("RAdam does not support sparse gradients") p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state["step"] = 0 state["exp_avg"] = torch.zeros_like(p_data_fp32) state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] beta1, beta2 = group["betas"] exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) state["step"] += 1 buffered = self.buffer[int(state["step"] % 10)] if state["step"] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state["step"] beta2_t = beta2 ** state["step"] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: step_size = ( group["lr"] * math.sqrt( (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2) ) / (1 - beta1 ** state["step"]) ) else: step_size = group["lr"] / (1 - beta1 ** state["step"]) buffered[2] = step_size if group["weight_decay"] != 0: p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32) # more conservative since it's an approximated value if N_sma >= 5: denom = exp_avg_sq.sqrt().add_(group["eps"]) p_data_fp32.addcdiv_(-step_size, exp_avg, denom) else: p_data_fp32.add_(-step_size, exp_avg) p.data.copy_(p_data_fp32) return loss