File size: 11,998 Bytes
6b366b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
095174f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b366b2
 
 
54c3682
 
abb46e7
54c3682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b366b2
54c3682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b366b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import streamlit as st
import requests
import cloudinary
import cloudinary.uploader
from PIL import Image
import io
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
import os

# Configure Cloudinary with your credentials
cloudinary.config(
    cloud_name="dvuowbmrz",
    api_key="177664162661619",
    api_secret="qVMYel17N_C5QUUUuBIuatB5tq0"
)
#
# # Set up OAuth2 client details
# CLIENT_SECRET_FILE = 'client_secret.json'
# SCOPES = ['https://www.googleapis.com/auth/drive.metadata.readonly']  # Adjust scopes as needed
#
# # Set up Streamlit app
# #st.title("Google Authentication Demo")
#
# # Check if the user is authenticated
# if 'credentials' not in st.session_state:
#     #st.write("WELCOME")
#     flow = InstalledAppFlow.from_client_secrets_file(CLIENT_SECRET_FILE, SCOPES)
#     credentials = flow.run_local_server(port=8501, authorization_prompt_message='')
#
#     # Save credentials to a file for future use (optional)
#     with open('token.json', 'w') as token_file:
#         token_file.write(credentials.to_json())
#
#     st.session_state.credentials = credentials
#     st.success("Authentication successful. You can now use the app.")
#
# # Use authenticated credentials to interact with Google API
# credentials = st.session_state.credentials
# service = build('drive', 'v3', credentials=credentials)
#
# # Fetch user's name from Google API
# try:
#     user_info = service.about().get(fields="user").execute()
#     user_name = user_info["user"]["displayName"]
#     #st.header("Google Profile Information")
#     st.markdown(f"<p style='font-size: 24px;'><strong>Userame: {user_name.upper()}</strong></p>", unsafe_allow_html=True)
# except Exception as e:
#     st.error(f"Error fetching user profile: {str(e)}")
#
# # Your app's functionality goes here
# # # Display Google Drive contents
# # st.header("Google Drive Contents")
# # results = service.files().list(pageSize=10).execute()
# # files = results.get('files', [])
# # if not files:
# #     st.write('No files found in Google Drive.')
# # else:
# #     st.write('Files in Google Drive:')
# #     for file in files:
# #         st.write(f"- {file['name']} ({file['mimeType']})")
#
# # Logout button
# if st.button("Logout"):
#     del st.session_state.credentials
#     os.remove("token_dir/token.json")  # Remove the token file
#



#@title Computer ko aang lagani ho to hi show code click karke ched chad karna

#!pip install git+https://github.com/openai/glide-text2im

from PIL import Image
from IPython.display import display
import torch as th

from glide_text2im.download import load_checkpoint
from glide_text2im.model_creation import (
    create_model_and_diffusion,
    model_and_diffusion_defaults,
    model_and_diffusion_defaults_upsampler
)

# This notebook supports both CPU and GPU.
# On CPU, generating one sample may take on the order of 20 minutes.
# On a GPU, it should be under a minute.

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

# Create base model.
options = model_and_diffusion_defaults()
options['use_fp16'] = has_cuda
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
model, diffusion = create_model_and_diffusion(**options)
model.eval()
if has_cuda:
    model.convert_to_fp16()
model.to(device)
model.load_state_dict(load_checkpoint('base', device))
print('total base parameters', sum(x.numel() for x in model.parameters()))

# Create upsampler model.
options_up = model_and_diffusion_defaults_upsampler()
options_up['use_fp16'] = has_cuda
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
model_up, diffusion_up = create_model_and_diffusion(**options_up)
model_up.eval()
if has_cuda:
    model_up.convert_to_fp16()
model_up.to(device)
model_up.load_state_dict(load_checkpoint('upsample', device))
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))

def show_images(batch: th.Tensor):
    """ Display a batch of images inline. """
    scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
    reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
    display(Image.fromarray(reshaped.numpy()))

def query_model_with_image(image_description):
    # Sampling parameters
  # image_description = "dog in the field" #@param {type:"string"}
  # image_description = ""
  batch_size = 1 #@param {type:"integer"}
  guidance_scale = 8.0

  # Tune this parameter to control the sharpness of 256x256 images.
  # A value of 1.0 is sharper, but sometimes results in grainy artifacts.
  upsample_temp = 0.997

  ##############################
  # Sample from the base model #
  ##############################

  # Create the text tokens to feed to the model.
  tokens = model.tokenizer.encode(image_description)
  tokens, mask = model.tokenizer.padded_tokens_and_mask(
      tokens, options['text_ctx']
  )

  # Create the classifier-free guidance tokens (empty)
  full_batch_size = batch_size * 2
  uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
      [], options['text_ctx']
  )

  # Pack the tokens together into model kwargs.
  model_kwargs = dict(
      tokens=th.tensor(
          [tokens] * batch_size + [uncond_tokens] * batch_size, device=device
      ),
      mask=th.tensor(
          [mask] * batch_size + [uncond_mask] * batch_size,
          dtype=th.bool,
          device=device,
      ),
  )

  # Create a classifier-free guidance sampling function
  def model_fn(x_t, ts, **kwargs):
      half = x_t[: len(x_t) // 2]
      combined = th.cat([half, half], dim=0)
      model_out = model(combined, ts, **kwargs)
      eps, rest = model_out[:, :3], model_out[:, 3:]
      cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
      half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
      eps = th.cat([half_eps, half_eps], dim=0)
      return th.cat([eps, rest], dim=1)

  # Sample from the base model.
  model.del_cache()
  samples = diffusion.p_sample_loop(
      model_fn,
      (full_batch_size, 3, options["image_size"], options["image_size"]),
      device=device,
      clip_denoised=True,
      progress=True,
      model_kwargs=model_kwargs,
      cond_fn=None,
  )[:batch_size]
  model.del_cache()

  # Show the output
  show_images(samples)


  ##############################
  # Upsample the 64x64 samples #
  ##############################

  tokens = model_up.tokenizer.encode(image_description)
  tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
      tokens, options_up['text_ctx']
  )

  # Create the model conditioning dict.
  model_kwargs = dict(
      # Low-res image to upsample.
      low_res=((samples+1)*127.5).round()/127.5 - 1,

      # Text tokens
      tokens=th.tensor(
          [tokens] * batch_size, device=device
      ),
      mask=th.tensor(
          [mask] * batch_size,
          dtype=th.bool,
          device=device,
      ),
  )

  # Sample from the base model.
  model_up.del_cache()
  up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
  image = diffusion_up.ddim_sample_loop(
      model_up,
      up_shape,
      noise=th.randn(up_shape, device=device) * upsample_temp,
      device=device,
      clip_denoised=True,
      progress=True,
      model_kwargs=model_kwargs,
      cond_fn=None,
  )[:batch_size]
  model_up.del_cache()

  # Show the output
  show_images(image)
  return image


def upload_to_cloudinary(image, prompt_text):
    image_data = io.BytesIO()
    image.save(image_data, format="JPEG")
    image_data.seek(0)

    upload_result = cloudinary.uploader.upload(
        image_data,
        folder="compvis_app",
        public_id=prompt_text
    )
    return upload_result["secure_url"]


def fetch_latest_images_from_cloudinary(num_images=9):
    # Use the Cloudinary Admin API to list resources
    url = f"https://api.cloudinary.com/v1_1/{cloudinary.config().cloud_name}/resources/image"
    params = {
        "max_results": num_images,
        "type": "upload"
    }
    response = requests.get(url, params=params, auth=(cloudinary.config().api_key, cloudinary.config().api_secret))

    if response.status_code == 200:
        images = response.json()["resources"]
    else:
        images = []

    return images

# Streamlit app
st.markdown("""<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">""", unsafe_allow_html=True)

st.title("Text to Image Generator")

image_description = st.text_input("Enter the image description")

if st.button("Generate Image"):
    processed_image = query_model_with_image(image_description)
    st.image(processed_image, use_column_width=True, output_format="JPEG")  # Use use_column_width=True
    st.session_state.processed_image = processed_image
    st.session_state.image_description = image_description
    st.write("Image generated.")

if st.button("Upload"):
    if 'processed_image' in st.session_state:
        uploaded_url = upload_to_cloudinary(st.session_state.processed_image, st.session_state.image_description)
        st.write("Image uploaded to Cloudinary. Prompt Text:", st.session_state.image_description)
        st.write("Image URL on Cloudinary:", uploaded_url)
    else:
        st.write("Generate an image first before uploading.")

# Fetch and display the latest images from Cloudinary
st.header("Latest Images created")

# Use the 'fetch_latest_images_from_cloudinary' function to get the latest images
latest_images = fetch_latest_images_from_cloudinary()

# Define the number of columns in the grid
num_columns = 3  # You can adjust this number as needed

# Calculate the width for each column
column_width = f"calc(33.33% - {10}px)"  # Adjust the width and margin as needed

# Add CSS styling for the grid and rounded images
st.markdown(
    f"""
    <style>
    .responsive-grid {{
        display: flex;
        flex-wrap: wrap;
        justify-content: space-between;
    }}
    .responsive-grid-item {{
        width: {column_width};
        margin: 10px;
        box-sizing: border-box;
        text-align: center;
        position: relative;
    }}
    .image-caption {{
        font-weight: bold;
    }}
    .rounded-image {{
        border-radius: 15px;  # Adjust the radius as needed for more or less roundness
        overflow: hidden;
    }}
    .download-button {{
        background-color: black;  # Set button color to black
        color: white;
        padding: 5px 10px;
        border-radius: 5px;
        text-decoration: none;
        display: inline-block;
        position: absolute;
        top: 10px;  # Adjust top value for vertical positioning
        right: 10px;  # Adjust right value for horizontal positioning
    }}
    </style>
    """,
    unsafe_allow_html=True,
)

# Create the responsive grid layout
st.markdown('<div class="responsive-grid">', unsafe_allow_html=True)

for i, image in enumerate(latest_images):
    image_url = image.get('secure_url', '')  # Get the image URL
    public_id = image.get('public_id', '')  # Get the full public_id

    # Extract just the filename (without the folder)
    filename = public_id.split('/')[-1]

    # Add some spacing around the image and its name
    st.markdown(f'<div class="responsive-grid-item">', unsafe_allow_html=True)
    st.markdown(f'<p class="image-caption">{filename}</p>', unsafe_allow_html=True)

    # Add rounded corners to the image using HTML
    st.markdown(f'<img src="{image_url}" class="rounded-image" width="{int(1.25 * 300)}">', unsafe_allow_html=True)

    # Add an arrow icon instead of "Download" button with black color
    download_link = f'<a href="{image_url}" class="download-button" download="{filename}">&#8595;</a>'
    st.markdown(download_link, unsafe_allow_html=True)

    st.write("")  # Add empty spaces for separation
    st.markdown('</div>', unsafe_allow_html=True)

# Close the responsive grid layout
st.markdown('</div>', unsafe_allow_html=True)