Spaces:
Runtime error
Runtime error
File size: 11,998 Bytes
6b366b2 095174f 6b366b2 54c3682 abb46e7 54c3682 6b366b2 54c3682 6b366b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import streamlit as st
import requests
import cloudinary
import cloudinary.uploader
from PIL import Image
import io
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
import os
# Configure Cloudinary with your credentials
cloudinary.config(
cloud_name="dvuowbmrz",
api_key="177664162661619",
api_secret="qVMYel17N_C5QUUUuBIuatB5tq0"
)
#
# # Set up OAuth2 client details
# CLIENT_SECRET_FILE = 'client_secret.json'
# SCOPES = ['https://www.googleapis.com/auth/drive.metadata.readonly'] # Adjust scopes as needed
#
# # Set up Streamlit app
# #st.title("Google Authentication Demo")
#
# # Check if the user is authenticated
# if 'credentials' not in st.session_state:
# #st.write("WELCOME")
# flow = InstalledAppFlow.from_client_secrets_file(CLIENT_SECRET_FILE, SCOPES)
# credentials = flow.run_local_server(port=8501, authorization_prompt_message='')
#
# # Save credentials to a file for future use (optional)
# with open('token.json', 'w') as token_file:
# token_file.write(credentials.to_json())
#
# st.session_state.credentials = credentials
# st.success("Authentication successful. You can now use the app.")
#
# # Use authenticated credentials to interact with Google API
# credentials = st.session_state.credentials
# service = build('drive', 'v3', credentials=credentials)
#
# # Fetch user's name from Google API
# try:
# user_info = service.about().get(fields="user").execute()
# user_name = user_info["user"]["displayName"]
# #st.header("Google Profile Information")
# st.markdown(f"<p style='font-size: 24px;'><strong>Userame: {user_name.upper()}</strong></p>", unsafe_allow_html=True)
# except Exception as e:
# st.error(f"Error fetching user profile: {str(e)}")
#
# # Your app's functionality goes here
# # # Display Google Drive contents
# # st.header("Google Drive Contents")
# # results = service.files().list(pageSize=10).execute()
# # files = results.get('files', [])
# # if not files:
# # st.write('No files found in Google Drive.')
# # else:
# # st.write('Files in Google Drive:')
# # for file in files:
# # st.write(f"- {file['name']} ({file['mimeType']})")
#
# # Logout button
# if st.button("Logout"):
# del st.session_state.credentials
# os.remove("token_dir/token.json") # Remove the token file
#
#@title Computer ko aang lagani ho to hi show code click karke ched chad karna
#!pip install git+https://github.com/openai/glide-text2im
from PIL import Image
from IPython.display import display
import torch as th
from glide_text2im.download import load_checkpoint
from glide_text2im.model_creation import (
create_model_and_diffusion,
model_and_diffusion_defaults,
model_and_diffusion_defaults_upsampler
)
# This notebook supports both CPU and GPU.
# On CPU, generating one sample may take on the order of 20 minutes.
# On a GPU, it should be under a minute.
has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')
# Create base model.
options = model_and_diffusion_defaults()
options['use_fp16'] = has_cuda
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
model, diffusion = create_model_and_diffusion(**options)
model.eval()
if has_cuda:
model.convert_to_fp16()
model.to(device)
model.load_state_dict(load_checkpoint('base', device))
print('total base parameters', sum(x.numel() for x in model.parameters()))
# Create upsampler model.
options_up = model_and_diffusion_defaults_upsampler()
options_up['use_fp16'] = has_cuda
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
model_up, diffusion_up = create_model_and_diffusion(**options_up)
model_up.eval()
if has_cuda:
model_up.convert_to_fp16()
model_up.to(device)
model_up.load_state_dict(load_checkpoint('upsample', device))
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
def show_images(batch: th.Tensor):
""" Display a batch of images inline. """
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
display(Image.fromarray(reshaped.numpy()))
def query_model_with_image(image_description):
# Sampling parameters
# image_description = "dog in the field" #@param {type:"string"}
# image_description = ""
batch_size = 1 #@param {type:"integer"}
guidance_scale = 8.0
# Tune this parameter to control the sharpness of 256x256 images.
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
upsample_temp = 0.997
##############################
# Sample from the base model #
##############################
# Create the text tokens to feed to the model.
tokens = model.tokenizer.encode(image_description)
tokens, mask = model.tokenizer.padded_tokens_and_mask(
tokens, options['text_ctx']
)
# Create the classifier-free guidance tokens (empty)
full_batch_size = batch_size * 2
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
[], options['text_ctx']
)
# Pack the tokens together into model kwargs.
model_kwargs = dict(
tokens=th.tensor(
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
),
mask=th.tensor(
[mask] * batch_size + [uncond_mask] * batch_size,
dtype=th.bool,
device=device,
),
)
# Create a classifier-free guidance sampling function
def model_fn(x_t, ts, **kwargs):
half = x_t[: len(x_t) // 2]
combined = th.cat([half, half], dim=0)
model_out = model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
eps = th.cat([half_eps, half_eps], dim=0)
return th.cat([eps, rest], dim=1)
# Sample from the base model.
model.del_cache()
samples = diffusion.p_sample_loop(
model_fn,
(full_batch_size, 3, options["image_size"], options["image_size"]),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
model.del_cache()
# Show the output
show_images(samples)
##############################
# Upsample the 64x64 samples #
##############################
tokens = model_up.tokenizer.encode(image_description)
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
tokens, options_up['text_ctx']
)
# Create the model conditioning dict.
model_kwargs = dict(
# Low-res image to upsample.
low_res=((samples+1)*127.5).round()/127.5 - 1,
# Text tokens
tokens=th.tensor(
[tokens] * batch_size, device=device
),
mask=th.tensor(
[mask] * batch_size,
dtype=th.bool,
device=device,
),
)
# Sample from the base model.
model_up.del_cache()
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
image = diffusion_up.ddim_sample_loop(
model_up,
up_shape,
noise=th.randn(up_shape, device=device) * upsample_temp,
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
model_up.del_cache()
# Show the output
show_images(image)
return image
def upload_to_cloudinary(image, prompt_text):
image_data = io.BytesIO()
image.save(image_data, format="JPEG")
image_data.seek(0)
upload_result = cloudinary.uploader.upload(
image_data,
folder="compvis_app",
public_id=prompt_text
)
return upload_result["secure_url"]
def fetch_latest_images_from_cloudinary(num_images=9):
# Use the Cloudinary Admin API to list resources
url = f"https://api.cloudinary.com/v1_1/{cloudinary.config().cloud_name}/resources/image"
params = {
"max_results": num_images,
"type": "upload"
}
response = requests.get(url, params=params, auth=(cloudinary.config().api_key, cloudinary.config().api_secret))
if response.status_code == 200:
images = response.json()["resources"]
else:
images = []
return images
# Streamlit app
st.markdown("""<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">""", unsafe_allow_html=True)
st.title("Text to Image Generator")
image_description = st.text_input("Enter the image description")
if st.button("Generate Image"):
processed_image = query_model_with_image(image_description)
st.image(processed_image, use_column_width=True, output_format="JPEG") # Use use_column_width=True
st.session_state.processed_image = processed_image
st.session_state.image_description = image_description
st.write("Image generated.")
if st.button("Upload"):
if 'processed_image' in st.session_state:
uploaded_url = upload_to_cloudinary(st.session_state.processed_image, st.session_state.image_description)
st.write("Image uploaded to Cloudinary. Prompt Text:", st.session_state.image_description)
st.write("Image URL on Cloudinary:", uploaded_url)
else:
st.write("Generate an image first before uploading.")
# Fetch and display the latest images from Cloudinary
st.header("Latest Images created")
# Use the 'fetch_latest_images_from_cloudinary' function to get the latest images
latest_images = fetch_latest_images_from_cloudinary()
# Define the number of columns in the grid
num_columns = 3 # You can adjust this number as needed
# Calculate the width for each column
column_width = f"calc(33.33% - {10}px)" # Adjust the width and margin as needed
# Add CSS styling for the grid and rounded images
st.markdown(
f"""
<style>
.responsive-grid {{
display: flex;
flex-wrap: wrap;
justify-content: space-between;
}}
.responsive-grid-item {{
width: {column_width};
margin: 10px;
box-sizing: border-box;
text-align: center;
position: relative;
}}
.image-caption {{
font-weight: bold;
}}
.rounded-image {{
border-radius: 15px; # Adjust the radius as needed for more or less roundness
overflow: hidden;
}}
.download-button {{
background-color: black; # Set button color to black
color: white;
padding: 5px 10px;
border-radius: 5px;
text-decoration: none;
display: inline-block;
position: absolute;
top: 10px; # Adjust top value for vertical positioning
right: 10px; # Adjust right value for horizontal positioning
}}
</style>
""",
unsafe_allow_html=True,
)
# Create the responsive grid layout
st.markdown('<div class="responsive-grid">', unsafe_allow_html=True)
for i, image in enumerate(latest_images):
image_url = image.get('secure_url', '') # Get the image URL
public_id = image.get('public_id', '') # Get the full public_id
# Extract just the filename (without the folder)
filename = public_id.split('/')[-1]
# Add some spacing around the image and its name
st.markdown(f'<div class="responsive-grid-item">', unsafe_allow_html=True)
st.markdown(f'<p class="image-caption">{filename}</p>', unsafe_allow_html=True)
# Add rounded corners to the image using HTML
st.markdown(f'<img src="{image_url}" class="rounded-image" width="{int(1.25 * 300)}">', unsafe_allow_html=True)
# Add an arrow icon instead of "Download" button with black color
download_link = f'<a href="{image_url}" class="download-button" download="{filename}">↓</a>'
st.markdown(download_link, unsafe_allow_html=True)
st.write("") # Add empty spaces for separation
st.markdown('</div>', unsafe_allow_html=True)
# Close the responsive grid layout
st.markdown('</div>', unsafe_allow_html=True) |