Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -72,15 +72,169 @@ API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-
|
|
72 |
headers = {"Authorization": "Bearer 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"}
|
73 |
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def query_model_with_image(image_description):
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
image = Image.open(io.BytesIO(image_bytes))
|
83 |
-
return image
|
84 |
|
85 |
def upload_to_cloudinary(image, prompt_text):
|
86 |
image_data = io.BytesIO()
|
|
|
72 |
headers = {"Authorization": "Bearer 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"}
|
73 |
|
74 |
|
75 |
+
#@title Computer ko aang lagani ho to hi show code click karke ched chad karna
|
76 |
+
|
77 |
+
!pip install git+https://github.com/openai/glide-text2im
|
78 |
+
|
79 |
+
from PIL import Image
|
80 |
+
from IPython.display import display
|
81 |
+
import torch as th
|
82 |
+
|
83 |
+
from glide_text2im.download import load_checkpoint
|
84 |
+
from glide_text2im.model_creation import (
|
85 |
+
create_model_and_diffusion,
|
86 |
+
model_and_diffusion_defaults,
|
87 |
+
model_and_diffusion_defaults_upsampler
|
88 |
+
)
|
89 |
+
|
90 |
+
# This notebook supports both CPU and GPU.
|
91 |
+
# On CPU, generating one sample may take on the order of 20 minutes.
|
92 |
+
# On a GPU, it should be under a minute.
|
93 |
+
|
94 |
+
has_cuda = th.cuda.is_available()
|
95 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
96 |
+
|
97 |
+
# Create base model.
|
98 |
+
options = model_and_diffusion_defaults()
|
99 |
+
options['use_fp16'] = has_cuda
|
100 |
+
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
101 |
+
model, diffusion = create_model_and_diffusion(**options)
|
102 |
+
model.eval()
|
103 |
+
if has_cuda:
|
104 |
+
model.convert_to_fp16()
|
105 |
+
model.to(device)
|
106 |
+
model.load_state_dict(load_checkpoint('base', device))
|
107 |
+
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
108 |
+
|
109 |
+
# Create upsampler model.
|
110 |
+
options_up = model_and_diffusion_defaults_upsampler()
|
111 |
+
options_up['use_fp16'] = has_cuda
|
112 |
+
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
113 |
+
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
114 |
+
model_up.eval()
|
115 |
+
if has_cuda:
|
116 |
+
model_up.convert_to_fp16()
|
117 |
+
model_up.to(device)
|
118 |
+
model_up.load_state_dict(load_checkpoint('upsample', device))
|
119 |
+
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
120 |
+
|
121 |
+
def show_images(batch: th.Tensor):
|
122 |
+
""" Display a batch of images inline. """
|
123 |
+
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
124 |
+
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
125 |
+
display(Image.fromarray(reshaped.numpy()))
|
126 |
+
|
127 |
def query_model_with_image(image_description):
|
128 |
+
# Sampling parameters
|
129 |
+
# image_description = "dog in the field" #@param {type:"string"}
|
130 |
+
# image_description = ""
|
131 |
+
batch_size = 1 #@param {type:"integer"}
|
132 |
+
guidance_scale = 8.0
|
133 |
+
|
134 |
+
# Tune this parameter to control the sharpness of 256x256 images.
|
135 |
+
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
136 |
+
upsample_temp = 0.997
|
137 |
+
|
138 |
+
##############################
|
139 |
+
# Sample from the base model #
|
140 |
+
##############################
|
141 |
+
|
142 |
+
# Create the text tokens to feed to the model.
|
143 |
+
tokens = model.tokenizer.encode(image_description)
|
144 |
+
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
145 |
+
tokens, options['text_ctx']
|
146 |
+
)
|
147 |
+
|
148 |
+
# Create the classifier-free guidance tokens (empty)
|
149 |
+
full_batch_size = batch_size * 2
|
150 |
+
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
151 |
+
[], options['text_ctx']
|
152 |
+
)
|
153 |
+
|
154 |
+
# Pack the tokens together into model kwargs.
|
155 |
+
model_kwargs = dict(
|
156 |
+
tokens=th.tensor(
|
157 |
+
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
158 |
+
),
|
159 |
+
mask=th.tensor(
|
160 |
+
[mask] * batch_size + [uncond_mask] * batch_size,
|
161 |
+
dtype=th.bool,
|
162 |
+
device=device,
|
163 |
+
),
|
164 |
+
)
|
165 |
+
|
166 |
+
# Create a classifier-free guidance sampling function
|
167 |
+
def model_fn(x_t, ts, **kwargs):
|
168 |
+
half = x_t[: len(x_t) // 2]
|
169 |
+
combined = th.cat([half, half], dim=0)
|
170 |
+
model_out = model(combined, ts, **kwargs)
|
171 |
+
eps, rest = model_out[:, :3], model_out[:, 3:]
|
172 |
+
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
173 |
+
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
174 |
+
eps = th.cat([half_eps, half_eps], dim=0)
|
175 |
+
return th.cat([eps, rest], dim=1)
|
176 |
+
|
177 |
+
# Sample from the base model.
|
178 |
+
model.del_cache()
|
179 |
+
samples = diffusion.p_sample_loop(
|
180 |
+
model_fn,
|
181 |
+
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
182 |
+
device=device,
|
183 |
+
clip_denoised=True,
|
184 |
+
progress=True,
|
185 |
+
model_kwargs=model_kwargs,
|
186 |
+
cond_fn=None,
|
187 |
+
)[:batch_size]
|
188 |
+
model.del_cache()
|
189 |
+
|
190 |
+
# Show the output
|
191 |
+
show_images(samples)
|
192 |
+
|
193 |
+
|
194 |
+
##############################
|
195 |
+
# Upsample the 64x64 samples #
|
196 |
+
##############################
|
197 |
+
|
198 |
+
tokens = model_up.tokenizer.encode(image_description)
|
199 |
+
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
200 |
+
tokens, options_up['text_ctx']
|
201 |
+
)
|
202 |
+
|
203 |
+
# Create the model conditioning dict.
|
204 |
+
model_kwargs = dict(
|
205 |
+
# Low-res image to upsample.
|
206 |
+
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
207 |
+
|
208 |
+
# Text tokens
|
209 |
+
tokens=th.tensor(
|
210 |
+
[tokens] * batch_size, device=device
|
211 |
+
),
|
212 |
+
mask=th.tensor(
|
213 |
+
[mask] * batch_size,
|
214 |
+
dtype=th.bool,
|
215 |
+
device=device,
|
216 |
+
),
|
217 |
+
)
|
218 |
+
|
219 |
+
# Sample from the base model.
|
220 |
+
model_up.del_cache()
|
221 |
+
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
222 |
+
image = diffusion_up.ddim_sample_loop(
|
223 |
+
model_up,
|
224 |
+
up_shape,
|
225 |
+
noise=th.randn(up_shape, device=device) * upsample_temp,
|
226 |
+
device=device,
|
227 |
+
clip_denoised=True,
|
228 |
+
progress=True,
|
229 |
+
model_kwargs=model_kwargs,
|
230 |
+
cond_fn=None,
|
231 |
+
)[:batch_size]
|
232 |
+
model_up.del_cache()
|
233 |
+
|
234 |
+
# Show the output
|
235 |
+
show_images(image)
|
236 |
+
return image
|
237 |
|
|
|
|
|
238 |
|
239 |
def upload_to_cloudinary(image, prompt_text):
|
240 |
image_data = io.BytesIO()
|