Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import time | |
from langchain.document_loaders import OnlinePDFLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.llms import OpenAI | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
def loading_pdf(): | |
return "加载中...⏳" | |
def pdf_changes(pdf_doc, openai_api_key, chunk_size, chunk_overlap, temperature, return_source): | |
if not openai_api_key: | |
return "你忘记了OpenAI API密钥🗝️" | |
os.environ['OPENAI_API_KEY'] = openai_api_key | |
loader = OnlinePDFLoader(pdf_doc.name) | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
texts = text_splitter.split_documents(documents) | |
embeddings = OpenAIEmbeddings() | |
db = Chroma.from_documents(texts, embeddings) | |
retriever = db.as_retriever() | |
global qa | |
qa = ConversationalRetrievalChain.from_llm( | |
llm=OpenAI(temperature=temperature,model="text-davinci-003",max_tokens=1000), | |
retriever=retriever, | |
return_source_documents=return_source) | |
return "准备就绪🚀" | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
response = infer(history[-1][0], history) | |
history[-1][1] = "" | |
for character in response: | |
history[-1][1] += character | |
time.sleep(0.05) | |
yield history | |
def infer(question, history): | |
res = [] | |
for human, ai in history[:-1]: | |
pair = (human, ai) | |
res.append(pair) | |
chat_history = res | |
query = question | |
result = qa({"question": query, "chat_history": chat_history}) | |
return result["answer"] | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto; background-color: #f0f0f0;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1 style="color: #3399FF; font-family: 'Courier New', Courier, monospace;">Chat PDF[text-davinci-003]📚</h1> | |
<p style="text-align: center;color: #666666; font-family: 'Courier New', Courier, monospace;">上传你的PDF,并将其加载到向量库中,<br /> | |
当一切准备就绪,你就可以开始提出关于pdf的问题了 🧐 <br /> | |
此版本使用text-davinci-003作为LLM</p> | |
</div> | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
with gr.Column(): | |
openai_api_key = gr.Textbox(label="你的OpenAI API密钥🔐", type="password") | |
pdf_doc = gr.File(label="加载一个pdf📄", file_types=['.pdf'], type="file") | |
with gr.Row(): | |
langchain_status = gr.Textbox(label="状态📊", placeholder="", interactive=False) | |
chunk_size_slider = gr.Slider(minimum=100, maximum=2000, value=1000, step=100, label='块大小📏') | |
chunk_overlap_slider = gr.Slider(minimum=0, maximum=1000, value=0, step=50, label='块重叠🔀') | |
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label='温度🌡️') | |
return_source_checkbox = gr.Checkbox(label='返回源文件📑', default=False) | |
load_pdf = gr.Button("加载PDF到LangChain🔄") | |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) | |
question = gr.Textbox(label="问题❓", placeholder="输入你的问题并按回车 ") | |
submit_btn = gr.Button("发送消息📨") | |
load_pdf.click(loading_pdf, None, langchain_status, queue=False) | |
load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_api_key, chunk_size_slider, chunk_overlap_slider, temperature_slider, return_source_checkbox], outputs=[langchain_status], queue=False) | |
question.submit(add_text, [chatbot, question], [chatbot, question]).then( | |
bot, chatbot, chatbot | |
) | |
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( | |
bot, chatbot, chatbot) | |
demo.launch() |