import gradio as gr import os import time from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.llms import OpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain def loading_pdf(): return "加载中...⏳" def pdf_changes(pdf_doc, openai_api_key, chunk_size, chunk_overlap, temperature, return_source): if not openai_api_key: return "你忘记了OpenAI API密钥🗝️" os.environ['OPENAI_API_KEY'] = openai_api_key loader = OnlinePDFLoader(pdf_doc.name) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = Chroma.from_documents(texts, embeddings) retriever = db.as_retriever() global qa qa = ConversationalRetrievalChain.from_llm( llm=OpenAI(temperature=temperature,model="text-davinci-003",max_tokens=1000), retriever=retriever, return_source_documents=return_source) return "准备就绪🚀" def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0], history) history[-1][1] = "" for character in response: history[-1][1] += character time.sleep(0.05) yield history def infer(question, history): res = [] for human, ai in history[:-1]: pair = (human, ai) res.append(pair) chat_history = res query = question result = qa({"question": query, "chat_history": chat_history}) return result["answer"] css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto; background-color: #f0f0f0;} """ title = """

Chat PDF[text-davinci-003]📚

上传你的PDF,并将其加载到向量库中,
当一切准备就绪,你就可以开始提出关于pdf的问题了 🧐
此版本使用text-davinci-003作为LLM

""" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) with gr.Column(): openai_api_key = gr.Textbox(label="你的OpenAI API密钥🔐", type="password") pdf_doc = gr.File(label="加载一个pdf📄", file_types=['.pdf'], type="file") with gr.Row(): langchain_status = gr.Textbox(label="状态📊", placeholder="", interactive=False) chunk_size_slider = gr.Slider(minimum=100, maximum=2000, value=1000, step=100, label='块大小📏') chunk_overlap_slider = gr.Slider(minimum=0, maximum=1000, value=0, step=50, label='块重叠🔀') temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.1, label='温度🌡️') return_source_checkbox = gr.Checkbox(label='返回源文件📑', default=False) load_pdf = gr.Button("加载PDF到LangChain🔄") chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) question = gr.Textbox(label="问题❓", placeholder="输入你的问题并按回车 ") submit_btn = gr.Button("发送消息📨") load_pdf.click(loading_pdf, None, langchain_status, queue=False) load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_api_key, chunk_size_slider, chunk_overlap_slider, temperature_slider, return_source_checkbox], outputs=[langchain_status], queue=False) question.submit(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot ) submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot) demo.launch()