Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import torch | |
import numpy as np | |
import gradio as gr | |
import torchaudio | |
import torchvision | |
import json | |
# Add parent directory to path to import preprocess functions | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
# Import functions from preprocess and model definitions | |
from preprocess import process_image_data | |
from evaluate_backbones import WatermelonModelModular, IMAGE_BACKBONES, AUDIO_BACKBONES | |
# Define the top-performing models based on evaluation | |
TOP_MODELS = [ | |
{"image_backbone": "efficientnet_b3", "audio_backbone": "transformer"}, | |
{"image_backbone": "efficientnet_b0", "audio_backbone": "transformer"}, | |
{"image_backbone": "resnet50", "audio_backbone": "transformer"} | |
] | |
# Define the MoE Model | |
class WatermelonMoEModel(torch.nn.Module): | |
def __init__(self, model_configs, model_dir="models", weights=None): | |
""" | |
Mixture of Experts model that combines multiple backbone models. | |
Args: | |
model_configs: List of dictionaries with 'image_backbone' and 'audio_backbone' keys | |
model_dir: Directory where model checkpoints are stored | |
weights: Optional list of weights for each model (None for equal weighting) | |
""" | |
super(WatermelonMoEModel, self).__init__() | |
self.models = [] | |
self.model_configs = model_configs | |
# Load each model | |
for config in model_configs: | |
img_backbone = config["image_backbone"] | |
audio_backbone = config["audio_backbone"] | |
# Initialize model | |
model = WatermelonModelModular(img_backbone, audio_backbone) | |
# Load weights | |
model_path = os.path.join(model_dir, f"{img_backbone}_{audio_backbone}_model.pt") | |
if os.path.exists(model_path): | |
print(f"\033[92mINFO\033[0m: Loading model {img_backbone}_{audio_backbone} from {model_path}") | |
model.load_state_dict(torch.load(model_path, map_location='cpu')) | |
else: | |
print(f"\033[91mERR!\033[0m: Model checkpoint not found at {model_path}") | |
continue | |
model.eval() # Set to evaluation mode | |
self.models.append(model) | |
# Set model weights (uniform by default) | |
if weights: | |
assert len(weights) == len(self.models), "Number of weights must match number of models" | |
self.weights = weights | |
else: | |
self.weights = [1.0 / len(self.models)] * len(self.models) if self.models else [1.0] | |
print(f"\033[92mINFO\033[0m: Loaded {len(self.models)} models for MoE ensemble") | |
print(f"\033[92mINFO\033[0m: Model weights: {self.weights}") | |
def to(self, device): | |
""" | |
Override to() method to ensure all sub-models are moved to the same device | |
""" | |
for model in self.models: | |
model.to(device) | |
return super(WatermelonMoEModel, self).to(device) | |
def forward(self, mfcc, image): | |
""" | |
Forward pass through the MoE model. | |
Returns the weighted average of all model outputs. | |
""" | |
if not self.models: | |
print(f"\033[91mERR!\033[0m: No models available for inference!") | |
return torch.tensor([0.0], device=mfcc.device) | |
outputs = [] | |
# Get outputs from each model | |
with torch.no_grad(): | |
for i, model in enumerate(self.models): | |
output = model(mfcc, image) | |
# print the output value | |
print(f"\033[92mDEBUG\033[0m: Model {i} output: {output}") | |
outputs.append(output * self.weights[i]) | |
# Return weighted average | |
return torch.sum(torch.stack(outputs), dim=0) | |
# Modified version of process_audio_data specifically for the app to handle various tensor shapes | |
def app_process_audio_data(waveform, sample_rate): | |
"""Modified version of process_audio_data for the app that handles different tensor dimensions""" | |
try: | |
print(f"\033[92mDEBUG\033[0m: Processing audio - Initial shape: {waveform.shape}, Sample rate: {sample_rate}") | |
# Handle different tensor dimensions | |
if waveform.dim() == 3: | |
print(f"\033[92mDEBUG\033[0m: Found 3D tensor, converting to 2D") | |
# For 3D tensor, take the first item (batch dimension) | |
waveform = waveform[0] | |
if waveform.dim() == 2: | |
# Use the first channel for stereo audio | |
waveform = waveform[0] | |
print(f"\033[92mDEBUG\033[0m: Using first channel, new shape: {waveform.shape}") | |
# Resample to 16kHz if needed | |
resample_rate = 16000 | |
if sample_rate != resample_rate: | |
print(f"\033[92mDEBUG\033[0m: Resampling from {sample_rate}Hz to {resample_rate}Hz") | |
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=resample_rate)(waveform) | |
# Ensure 3 seconds of audio | |
if waveform.size(0) < 3 * resample_rate: | |
print(f"\033[92mDEBUG\033[0m: Padding audio from {waveform.size(0)} to {3 * resample_rate} samples") | |
waveform = torch.nn.functional.pad(waveform, (0, 3 * resample_rate - waveform.size(0))) | |
else: | |
print(f"\033[92mDEBUG\033[0m: Trimming audio from {waveform.size(0)} to {3 * resample_rate} samples") | |
waveform = waveform[: 3 * resample_rate] | |
# Apply MFCC transformation | |
print(f"\033[92mDEBUG\033[0m: Applying MFCC transformation") | |
mfcc_transform = torchaudio.transforms.MFCC( | |
sample_rate=resample_rate, | |
n_mfcc=13, | |
melkwargs={ | |
"n_fft": 256, | |
"win_length": 256, | |
"hop_length": 128, | |
"n_mels": 40, | |
} | |
) | |
mfcc = mfcc_transform(waveform) | |
print(f"\033[92mDEBUG\033[0m: MFCC output shape: {mfcc.shape}") | |
return mfcc | |
except Exception as e: | |
import traceback | |
print(f"\033[91mERR!\033[0m: Error in audio processing: {e}") | |
print(traceback.format_exc()) | |
return None | |
# Using the decorator for GPU acceleration | |
def predict_sugar_content(audio, image, model_dir="models", weights=None): | |
"""Function with GPU acceleration to predict watermelon sugar content in Brix using MoE model""" | |
try: | |
# Check CUDA availability inside the GPU-decorated function | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"\033[92mINFO\033[0m: Using device: {device}") | |
# Load MoE model | |
moe_model = WatermelonMoEModel(TOP_MODELS, model_dir, weights) | |
moe_model = moe_model.to(device) # Move entire model to device | |
moe_model.eval() | |
print(f"\033[92mINFO\033[0m: Loaded MoE model with {len(moe_model.models)} backbone models") | |
# Handle different audio input formats | |
if isinstance(audio, tuple) and len(audio) >= 2: | |
sample_rate, audio_data = audio[0], audio[1] if len(audio) == 2 else audio[-1] | |
elif isinstance(audio, str): | |
audio_data, sample_rate = torchaudio.load(audio) | |
else: | |
return f"Error: Unsupported audio format. Got {type(audio)}" | |
# Convert audio to tensor if needed | |
if isinstance(audio_data, np.ndarray): | |
audio_tensor = torch.tensor(audio_data).float() | |
else: | |
audio_tensor = audio_data.float() | |
# Process audio | |
mfcc = app_process_audio_data(audio_tensor, sample_rate) | |
if mfcc is None: | |
return "Error: Failed to process audio input" | |
# Process image | |
if isinstance(image, np.ndarray): | |
image_tensor = torch.from_numpy(image).permute(2, 0, 1) # Convert to CxHxW format | |
elif isinstance(image, str): | |
image_tensor = torchvision.io.read_image(image) | |
else: | |
return f"Error: Unsupported image format. Got {type(image)}" | |
image_tensor = image_tensor.float() | |
processed_image = process_image_data(image_tensor) | |
if processed_image is None: | |
return "Error: Failed to process image input" | |
# Add batch dimension and move to device | |
mfcc = mfcc.unsqueeze(0).to(device) | |
processed_image = processed_image.unsqueeze(0).to(device) | |
# Run inference | |
with torch.no_grad(): | |
brix_value = moe_model(mfcc, processed_image) | |
prediction = brix_value.item() | |
print(f"\033[92mDEBUG\033[0m: Raw prediction: {prediction}") | |
# Ensure prediction is within reasonable bounds (e.g., 6-13 Brix) | |
prediction = max(6.0, min(13.0, prediction)) | |
print(f"\033[92mDEBUG\033[0m: Bounded prediction: {prediction}") | |
# Format the result | |
result = f"π Predicted Sugar Content: {prediction:.1f}Β° Brix π\n\n" | |
# Add extra info about the MoE model | |
result += "Using Ensemble of Top-3 Models:\n" | |
result += "- EfficientNet-B3 + Transformer\n" | |
result += "- EfficientNet-B0 + Transformer\n" | |
result += "- ResNet-50 + Transformer\n\n" | |
# Add Brix scale visualization | |
result += "Sugar Content Scale (in Β°Brix):\n" | |
result += "ββββββββββββββββββββββββββββββββββ\n" | |
# Create the scale display with Brix ranges | |
scale_ranges = [ | |
(0, 8, "Low Sugar (< 8Β° Brix)"), | |
(8, 9, "Mild Sweetness (8-9Β° Brix)"), | |
(9, 10, "Medium Sweetness (9-10Β° Brix)"), | |
(10, 11, "Sweet (10-11Β° Brix)"), | |
(11, 13, "Very Sweet (11-13Β° Brix)") | |
] | |
# Find which category the prediction falls into | |
user_category = None | |
for min_val, max_val, category_name in scale_ranges: | |
if min_val <= prediction < max_val: | |
user_category = category_name | |
break | |
if prediction >= scale_ranges[-1][0]: # Handle edge case | |
user_category = scale_ranges[-1][2] | |
# Display the scale with the user's result highlighted | |
for min_val, max_val, category_name in scale_ranges: | |
if category_name == user_category: | |
result += f"βΆ {min_val}-{max_val}: {category_name} β (YOUR WATERMELON)\n" | |
else: | |
result += f" {min_val}-{max_val}: {category_name}\n" | |
result += "ββββββββββββββββββββββββββββββββββ\n\n" | |
# Add assessment of the watermelon's sugar content | |
if prediction < 8: | |
result += "Assessment: This watermelon has low sugar content. It may taste bland or slightly bitter." | |
elif prediction < 9: | |
result += "Assessment: This watermelon has mild sweetness. Acceptable flavor but not very sweet." | |
elif prediction < 10: | |
result += "Assessment: This watermelon has moderate sugar content. It should have pleasant sweetness." | |
elif prediction < 11: | |
result += "Assessment: This watermelon has good sugar content! It should be sweet and juicy." | |
else: | |
result += "Assessment: This watermelon has excellent sugar content! Perfect choice for maximum sweetness and flavor." | |
return result | |
except Exception as e: | |
import traceback | |
error_msg = f"Error: {str(e)}\n\n" | |
error_msg += traceback.format_exc() | |
print(f"\033[91mERR!\033[0m: {error_msg}") | |
return error_msg | |
def create_app(model_dir="models", weights=None): | |
"""Create and launch the Gradio interface""" | |
# Define the prediction function with model path | |
def predict_fn(audio, image): | |
return predict_sugar_content(audio, image, model_dir, weights) | |
# Create Gradio interface | |
with gr.Blocks(title="Watermelon Sugar Content Predictor (MoE)", theme=gr.themes.Soft()) as interface: | |
gr.Markdown("# π Watermelon Sugar Content Predictor (Ensemble Model)") | |
gr.Markdown(""" | |
This app predicts the sugar content (in Β°Brix) of a watermelon based on its sound and appearance. | |
## What's New | |
This version uses a Mixture of Experts (MoE) ensemble model that combines the three best-performing models: | |
- EfficientNet-B3 + Transformer | |
- EfficientNet-B0 + Transformer | |
- ResNet-50 + Transformer | |
The ensemble approach provides more accurate predictions than any single model! | |
## Instructions: | |
1. Upload or record an audio of tapping the watermelon | |
2. Upload or capture an image of the watermelon | |
3. Click 'Predict' to get the sugar content estimation | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
audio_input = gr.Audio(label="Upload or Record Audio", type="numpy") | |
image_input = gr.Image(label="Upload or Capture Image") | |
submit_btn = gr.Button("Predict Sugar Content", variant="primary") | |
with gr.Column(): | |
output = gr.Textbox(label="Prediction Results", lines=15) | |
submit_btn.click( | |
fn=predict_fn, | |
inputs=[audio_input, image_input], | |
outputs=output | |
) | |
gr.Markdown(""" | |
## Tips for best results | |
- For audio: Tap the watermelon with your knuckle and record the sound | |
- For image: Take a clear photo of the whole watermelon in good lighting | |
## About Brix Measurement | |
Brix (Β°Bx) is a measurement of sugar content in a solution. For watermelons, higher Brix values indicate sweeter fruit. | |
The average ripe watermelon has a Brix value between 9-11Β°. | |
## About the Mixture of Experts Model | |
This app uses a Mixture of Experts (MoE) model that combines predictions from multiple neural networks. | |
Our testing shows the ensemble approach achieves a Mean Absolute Error (MAE) of ~0.22, which is significantly | |
better than any individual model (best individual model: ~0.36 MAE). | |
""") | |
return interface | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser(description="Watermelon Sugar Content Prediction App (MoE)") | |
parser.add_argument( | |
"--model_dir", | |
type=str, | |
default="models", | |
help="Directory containing the model checkpoints" | |
) | |
parser.add_argument( | |
"--share", | |
action="store_true", | |
help="Create a shareable link for the app" | |
) | |
parser.add_argument( | |
"--debug", | |
action="store_true", | |
help="Enable verbose debug output" | |
) | |
parser.add_argument( | |
"--weighting", | |
type=str, | |
choices=["uniform", "performance"], | |
default="uniform", | |
help="How to weight the models (uniform or based on performance)" | |
) | |
args = parser.parse_args() | |
if args.debug: | |
print(f"\033[92mINFO\033[0m: Debug mode enabled") | |
# Check if model directory exists | |
if not os.path.exists(args.model_dir): | |
print(f"\033[91mERR!\033[0m: Model directory not found at {args.model_dir}") | |
sys.exit(1) | |
# Determine weights based on argument | |
weights = None | |
if args.weighting == "performance": | |
# Weights inversely proportional to the MAE (better models get higher weights) | |
# These are the MAE values from the evaluation results | |
mae_values = [0.3635, 0.3765, 0.3959] # efficientnet_b3+transformer, efficientnet_b0+transformer, resnet50+transformer | |
# Convert to weights (inverse of MAE, normalized) | |
inverse_mae = [1/mae for mae in mae_values] | |
total = sum(inverse_mae) | |
weights = [val/total for val in inverse_mae] | |
print(f"\033[92mINFO\033[0m: Using performance-based weights: {weights}") | |
else: | |
print(f"\033[92mINFO\033[0m: Using uniform weights") | |
# Create and launch the app | |
app = create_app(args.model_dir, weights) | |
app.launch(share=args.share) |