File size: 16,447 Bytes
6f4e394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d3a3b3
6f4e394
 
 
 
 
 
 
 
 
 
 
 
 
 
2d3a3b3
6f4e394
 
 
2d3a3b3
 
 
6f4e394
 
2d3a3b3
6f4e394
 
 
2d3a3b3
6f4e394
2d3a3b3
6f4e394
 
fbfa85f
 
 
 
 
 
 
 
6f4e394
 
 
 
 
13b45d3
 
2d3a3b3
13b45d3
6f4e394
 
 
 
 
 
2d3a3b3
 
6f4e394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d3a3b3
 
6f4e394
 
 
2d3a3b3
6f4e394
 
 
 
2d3a3b3
 
6f4e394
 
 
 
 
2d3a3b3
6f4e394
 
 
 
 
2d3a3b3
6f4e394
2d3a3b3
 
6f4e394
2d3a3b3
6f4e394
2d3a3b3
6f4e394
2d3a3b3
6f4e394
 
 
 
 
2d3a3b3
 
6f4e394
2d3a3b3
 
 
6f4e394
2d3a3b3
 
 
 
 
dd995d1
2d3a3b3
 
 
6f4e394
2d3a3b3
 
6f4e394
2d3a3b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f4e394
2d3a3b3
 
 
 
 
 
 
 
 
 
 
 
 
6f4e394
2d3a3b3
 
 
6f4e394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import os
import sys
import torch
import numpy as np
import gradio as gr
import torchaudio
import torchvision
import json

# Add parent directory to path to import preprocess functions
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# Import functions from preprocess and model definitions
from preprocess import process_image_data
from evaluate_backbones import WatermelonModelModular, IMAGE_BACKBONES, AUDIO_BACKBONES

# Define the top-performing models based on evaluation
TOP_MODELS = [
    {"image_backbone": "efficientnet_b3", "audio_backbone": "transformer"},
    {"image_backbone": "efficientnet_b0", "audio_backbone": "transformer"},
    {"image_backbone": "resnet50", "audio_backbone": "transformer"}
]

# Define the MoE Model
class WatermelonMoEModel(torch.nn.Module):
    def __init__(self, model_configs, model_dir="models", weights=None):
        """
        Mixture of Experts model that combines multiple backbone models.
        
        Args:
            model_configs: List of dictionaries with 'image_backbone' and 'audio_backbone' keys
            model_dir: Directory where model checkpoints are stored
            weights: Optional list of weights for each model (None for equal weighting)
        """
        super(WatermelonMoEModel, self).__init__()
        self.models = []
        self.model_configs = model_configs
        
        # Load each model
        for config in model_configs:
            img_backbone = config["image_backbone"]
            audio_backbone = config["audio_backbone"]
            
            # Initialize model
            model = WatermelonModelModular(img_backbone, audio_backbone)
            
            # Load weights
            model_path = os.path.join(model_dir, f"{img_backbone}_{audio_backbone}_model.pt")
            if os.path.exists(model_path):
                print(f"\033[92mINFO\033[0m: Loading model {img_backbone}_{audio_backbone} from {model_path}")
                model.load_state_dict(torch.load(model_path, map_location='cpu'))
            else:
                print(f"\033[91mERR!\033[0m: Model checkpoint not found at {model_path}")
                continue
                
            model.eval()  # Set to evaluation mode
            self.models.append(model)
        
        # Set model weights (uniform by default)
        if weights:
            assert len(weights) == len(self.models), "Number of weights must match number of models"
            self.weights = weights
        else:
            self.weights = [1.0 / len(self.models)] * len(self.models) if self.models else [1.0]
            
        print(f"\033[92mINFO\033[0m: Loaded {len(self.models)} models for MoE ensemble")
        print(f"\033[92mINFO\033[0m: Model weights: {self.weights}")

    def to(self, device):
        """
        Override to() method to ensure all sub-models are moved to the same device
        """
        for model in self.models:
            model.to(device)
        return super(WatermelonMoEModel, self).to(device)

    def forward(self, mfcc, image):
        """
        Forward pass through the MoE model.
        Returns the weighted average of all model outputs.
        """
        if not self.models:
            print(f"\033[91mERR!\033[0m: No models available for inference!")
            return torch.tensor([0.0], device=mfcc.device)
            
        outputs = []
        
        # Get outputs from each model
        with torch.no_grad():
            for i, model in enumerate(self.models):
                output = model(mfcc, image)
                # print the output value
                print(f"\033[92mDEBUG\033[0m: Model {i} output: {output}")
                outputs.append(output * self.weights[i])
        
        # Return weighted average
        return torch.sum(torch.stack(outputs), dim=0)

# Modified version of process_audio_data specifically for the app to handle various tensor shapes
def app_process_audio_data(waveform, sample_rate):
    """Modified version of process_audio_data for the app that handles different tensor dimensions"""
    try:
        print(f"\033[92mDEBUG\033[0m: Processing audio - Initial shape: {waveform.shape}, Sample rate: {sample_rate}")
        
        # Handle different tensor dimensions
        if waveform.dim() == 3:
            print(f"\033[92mDEBUG\033[0m: Found 3D tensor, converting to 2D")
            # For 3D tensor, take the first item (batch dimension)
            waveform = waveform[0]
            
        if waveform.dim() == 2:
            # Use the first channel for stereo audio
            waveform = waveform[0]
            print(f"\033[92mDEBUG\033[0m: Using first channel, new shape: {waveform.shape}")
        
        # Resample to 16kHz if needed
        resample_rate = 16000
        if sample_rate != resample_rate:
            print(f"\033[92mDEBUG\033[0m: Resampling from {sample_rate}Hz to {resample_rate}Hz")
            waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=resample_rate)(waveform)
        
        # Ensure 3 seconds of audio
        if waveform.size(0) < 3 * resample_rate:
            print(f"\033[92mDEBUG\033[0m: Padding audio from {waveform.size(0)} to {3 * resample_rate} samples")
            waveform = torch.nn.functional.pad(waveform, (0, 3 * resample_rate - waveform.size(0)))
        else:
            print(f"\033[92mDEBUG\033[0m: Trimming audio from {waveform.size(0)} to {3 * resample_rate} samples")
            waveform = waveform[: 3 * resample_rate]
        
        # Apply MFCC transformation
        print(f"\033[92mDEBUG\033[0m: Applying MFCC transformation")
        mfcc_transform = torchaudio.transforms.MFCC(
            sample_rate=resample_rate,
            n_mfcc=13,
            melkwargs={
                "n_fft": 256,
                "win_length": 256,
                "hop_length": 128,
                "n_mels": 40,
            }
        )
        
        mfcc = mfcc_transform(waveform)
        print(f"\033[92mDEBUG\033[0m: MFCC output shape: {mfcc.shape}")
        
        return mfcc
    except Exception as e:
        import traceback
        print(f"\033[91mERR!\033[0m: Error in audio processing: {e}")
        print(traceback.format_exc())
        return None

# Using the decorator for GPU acceleration
def predict_sugar_content(audio, image, model_dir="models", weights=None):
    """Function with GPU acceleration to predict watermelon sugar content in Brix using MoE model"""
    try:
        # Check CUDA availability inside the GPU-decorated function
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        print(f"\033[92mINFO\033[0m: Using device: {device}")
        
        # Load MoE model
        moe_model = WatermelonMoEModel(TOP_MODELS, model_dir, weights)
        moe_model = moe_model.to(device)  # Move entire model to device
        moe_model.eval()
        print(f"\033[92mINFO\033[0m: Loaded MoE model with {len(moe_model.models)} backbone models")
        
        # Handle different audio input formats
        if isinstance(audio, tuple) and len(audio) >= 2:
            sample_rate, audio_data = audio[0], audio[1] if len(audio) == 2 else audio[-1]
        elif isinstance(audio, str):
            audio_data, sample_rate = torchaudio.load(audio)
        else:
            return f"Error: Unsupported audio format. Got {type(audio)}"
        
        # Convert audio to tensor if needed
        if isinstance(audio_data, np.ndarray):
            audio_tensor = torch.tensor(audio_data).float()
        else:
            audio_tensor = audio_data.float()
        
        # Process audio
        mfcc = app_process_audio_data(audio_tensor, sample_rate)
        if mfcc is None:
            return "Error: Failed to process audio input"
        
        # Process image
        if isinstance(image, np.ndarray):
            image_tensor = torch.from_numpy(image).permute(2, 0, 1)  # Convert to CxHxW format
        elif isinstance(image, str):
            image_tensor = torchvision.io.read_image(image)
        else:
            return f"Error: Unsupported image format. Got {type(image)}"
        
        image_tensor = image_tensor.float()
        processed_image = process_image_data(image_tensor)
        if processed_image is None:
            return "Error: Failed to process image input"
        
        # Add batch dimension and move to device
        mfcc = mfcc.unsqueeze(0).to(device)
        processed_image = processed_image.unsqueeze(0).to(device)
        
        # Run inference
        with torch.no_grad():
            brix_value = moe_model(mfcc, processed_image)
            prediction = brix_value.item()
            print(f"\033[92mDEBUG\033[0m: Raw prediction: {prediction}")
            
            # Ensure prediction is within reasonable bounds (e.g., 6-13 Brix)
            prediction = max(6.0, min(13.0, prediction))
            print(f"\033[92mDEBUG\033[0m: Bounded prediction: {prediction}")
        
        # Format the result
        result = f"πŸ‰ Predicted Sugar Content: {prediction:.1f}Β° Brix πŸ‰\n\n"
        
        # Add extra info about the MoE model
        result += "Using Ensemble of Top-3 Models:\n"
        result += "- EfficientNet-B3 + Transformer\n"
        result += "- EfficientNet-B0 + Transformer\n"
        result += "- ResNet-50 + Transformer\n\n"
        
        # Add Brix scale visualization
        result += "Sugar Content Scale (in Β°Brix):\n"
        result += "──────────────────────────────────\n"
        
        # Create the scale display with Brix ranges
        scale_ranges = [
            (0, 8, "Low Sugar (< 8Β° Brix)"),
            (8, 9, "Mild Sweetness (8-9Β° Brix)"),
            (9, 10, "Medium Sweetness (9-10Β° Brix)"),
            (10, 11, "Sweet (10-11Β° Brix)"),
            (11, 13, "Very Sweet (11-13Β° Brix)")
        ]
        
        # Find which category the prediction falls into
        user_category = None
        for min_val, max_val, category_name in scale_ranges:
            if min_val <= prediction < max_val:
                user_category = category_name
                break
        if prediction >= scale_ranges[-1][0]:  # Handle edge case
            user_category = scale_ranges[-1][2]
        
        # Display the scale with the user's result highlighted
        for min_val, max_val, category_name in scale_ranges:
            if category_name == user_category:
                result += f"β–Ά {min_val}-{max_val}: {category_name} β—€ (YOUR WATERMELON)\n"
            else:
                result += f"  {min_val}-{max_val}: {category_name}\n"
        
        result += "──────────────────────────────────\n\n"
        
        # Add assessment of the watermelon's sugar content
        if prediction < 8:
            result += "Assessment: This watermelon has low sugar content. It may taste bland or slightly bitter."
        elif prediction < 9:
            result += "Assessment: This watermelon has mild sweetness. Acceptable flavor but not very sweet."
        elif prediction < 10:
            result += "Assessment: This watermelon has moderate sugar content. It should have pleasant sweetness."
        elif prediction < 11:
            result += "Assessment: This watermelon has good sugar content! It should be sweet and juicy."
        else:
            result += "Assessment: This watermelon has excellent sugar content! Perfect choice for maximum sweetness and flavor."
            
        return result
    except Exception as e:
        import traceback
        error_msg = f"Error: {str(e)}\n\n"
        error_msg += traceback.format_exc()
        print(f"\033[91mERR!\033[0m: {error_msg}")
        return error_msg

def create_app(model_dir="models", weights=None):
    """Create and launch the Gradio interface"""
    # Define the prediction function with model path
    def predict_fn(audio, image):
        return predict_sugar_content(audio, image, model_dir, weights)
    
    # Create Gradio interface
    with gr.Blocks(title="Watermelon Sugar Content Predictor (MoE)", theme=gr.themes.Soft()) as interface:
        gr.Markdown("# πŸ‰ Watermelon Sugar Content Predictor (Ensemble Model)")
        gr.Markdown("""
        This app predicts the sugar content (in Β°Brix) of a watermelon based on its sound and appearance.
        
        ## What's New
        This version uses a Mixture of Experts (MoE) ensemble model that combines the three best-performing models:
        - EfficientNet-B3 + Transformer
        - EfficientNet-B0 + Transformer
        - ResNet-50 + Transformer
        
        The ensemble approach provides more accurate predictions than any single model!
        
        ## Instructions:
        1. Upload or record an audio of tapping the watermelon
        2. Upload or capture an image of the watermelon
        3. Click 'Predict' to get the sugar content estimation
        """)
        
        with gr.Row():
            with gr.Column():
                audio_input = gr.Audio(label="Upload or Record Audio", type="numpy")
                image_input = gr.Image(label="Upload or Capture Image")
                submit_btn = gr.Button("Predict Sugar Content", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(label="Prediction Results", lines=15)
                
        submit_btn.click(
            fn=predict_fn,
            inputs=[audio_input, image_input],
            outputs=output
        )
        
        gr.Markdown("""
        ## Tips for best results
        - For audio: Tap the watermelon with your knuckle and record the sound
        - For image: Take a clear photo of the whole watermelon in good lighting
        
        ## About Brix Measurement
        Brix (Β°Bx) is a measurement of sugar content in a solution. For watermelons, higher Brix values indicate sweeter fruit.
        The average ripe watermelon has a Brix value between 9-11Β°.
        
        ## About the Mixture of Experts Model
        This app uses a Mixture of Experts (MoE) model that combines predictions from multiple neural networks.
        Our testing shows the ensemble approach achieves a Mean Absolute Error (MAE) of ~0.22, which is significantly 
        better than any individual model (best individual model: ~0.36 MAE).
        """)
    
    return interface

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser(description="Watermelon Sugar Content Prediction App (MoE)")
    parser.add_argument(
        "--model_dir", 
        type=str, 
        default="models", 
        help="Directory containing the model checkpoints"
    )
    parser.add_argument(
        "--share", 
        action="store_true", 
        help="Create a shareable link for the app"
    )
    parser.add_argument(
        "--debug", 
        action="store_true", 
        help="Enable verbose debug output"
    )
    parser.add_argument(
        "--weighting", 
        type=str, 
        choices=["uniform", "performance"], 
        default="uniform", 
        help="How to weight the models (uniform or based on performance)"
    )
    
    args = parser.parse_args()
    
    if args.debug:
        print(f"\033[92mINFO\033[0m: Debug mode enabled")
    
    # Check if model directory exists
    if not os.path.exists(args.model_dir):
        print(f"\033[91mERR!\033[0m: Model directory not found at {args.model_dir}")
        sys.exit(1)
    
    # Determine weights based on argument
    weights = None
    if args.weighting == "performance":
        # Weights inversely proportional to the MAE (better models get higher weights)
        # These are the MAE values from the evaluation results
        mae_values = [0.3635, 0.3765, 0.3959]  # efficientnet_b3+transformer, efficientnet_b0+transformer, resnet50+transformer
        
        # Convert to weights (inverse of MAE, normalized)
        inverse_mae = [1/mae for mae in mae_values]
        total = sum(inverse_mae)
        weights = [val/total for val in inverse_mae]
        
        print(f"\033[92mINFO\033[0m: Using performance-based weights: {weights}")
    else:
        print(f"\033[92mINFO\033[0m: Using uniform weights")
    
    # Create and launch the app
    app = create_app(args.model_dir, weights)
    app.launch(share=args.share)