watermelon2 / evaluate_backbones.py
Xalphinions's picture
Upload folder using huggingface_hub
6f4e394 verified
raw
history blame
28.6 kB
import os
import torch
import torchaudio
import torchvision
import numpy as np
import time
import json
from torch.utils.data import Dataset, DataLoader
import sys
from tqdm import tqdm
# Add parent directory to path to import the preprocess functions
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from preprocess import process_audio_data, process_image_data
# Print library versions
print(f"\033[92mINFO\033[0m: PyTorch version: {torch.__version__}")
print(f"\033[92mINFO\033[0m: Torchaudio version: {torchaudio.__version__}")
print(f"\033[92mINFO\033[0m: Torchvision version: {torchvision.__version__}")
# Device selection
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")
# Hyperparameters
batch_size = 16
epochs = 1 # Just one epoch for evaluation
learning_rate = 0.0001
class WatermelonDataset(Dataset):
def __init__(self, data_dir):
self.data_dir = data_dir
self.samples = []
# Walk through the directory structure
for sweetness_dir in os.listdir(data_dir):
sweetness = float(sweetness_dir)
sweetness_path = os.path.join(data_dir, sweetness_dir)
if os.path.isdir(sweetness_path):
for id_dir in os.listdir(sweetness_path):
id_path = os.path.join(sweetness_path, id_dir)
if os.path.isdir(id_path):
audio_file = os.path.join(id_path, f"{id_dir}.wav")
image_file = os.path.join(id_path, f"{id_dir}.jpg")
if os.path.exists(audio_file) and os.path.exists(image_file):
self.samples.append((audio_file, image_file, sweetness))
print(f"\033[92mINFO\033[0m: Loaded {len(self.samples)} samples from {data_dir}")
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
audio_path, image_path, label = self.samples[idx]
# Load and process audio
try:
waveform, sample_rate = torchaudio.load(audio_path)
mfcc = process_audio_data(waveform, sample_rate)
# Load and process image
image = torchvision.io.read_image(image_path)
image = image.float()
processed_image = process_image_data(image)
return mfcc, processed_image, torch.tensor(label).float()
except Exception as e:
print(f"\033[91mERR!\033[0m: Error processing sample {idx}: {e}")
# Return a fallback sample or skip this sample
# For simplicity, we'll return the first sample again
if idx == 0: # Prevent infinite recursion
raise e
return self.__getitem__(0)
# Define available backbone models
IMAGE_BACKBONES = {
"resnet50": {
"model": torchvision.models.resnet50,
"weights": torchvision.models.ResNet50_Weights.DEFAULT,
"output_dim": lambda model: model.fc.in_features
},
"efficientnet_b0": {
"model": torchvision.models.efficientnet_b0,
"weights": torchvision.models.EfficientNet_B0_Weights.DEFAULT,
"output_dim": lambda model: model.classifier[1].in_features
},
"efficientnet_b3": {
"model": torchvision.models.efficientnet_b3,
"weights": torchvision.models.EfficientNet_B3_Weights.DEFAULT,
"output_dim": lambda model: model.classifier[1].in_features
}
}
AUDIO_BACKBONES = {
"lstm": {
"model": lambda input_size, hidden_size: torch.nn.LSTM(
input_size=input_size, hidden_size=hidden_size, num_layers=2, batch_first=True
),
"output_dim": lambda hidden_size: hidden_size
},
"gru": {
"model": lambda input_size, hidden_size: torch.nn.GRU(
input_size=input_size, hidden_size=hidden_size, num_layers=2, batch_first=True
),
"output_dim": lambda hidden_size: hidden_size
},
"bidirectional_lstm": {
"model": lambda input_size, hidden_size: torch.nn.LSTM(
input_size=input_size, hidden_size=hidden_size, num_layers=2, batch_first=True, bidirectional=True
),
"output_dim": lambda hidden_size: hidden_size * 2 # * 2 because bidirectional
},
"transformer": {
"model": lambda input_size, hidden_size: torch.nn.TransformerEncoder(
torch.nn.TransformerEncoderLayer(
d_model=input_size, nhead=8, dim_feedforward=hidden_size, batch_first=True
),
num_layers=2
),
"output_dim": lambda hidden_size: 376 # Using input_size (mfcc dimensions)
}
}
class WatermelonModelModular(torch.nn.Module):
def __init__(self, image_backbone_name, audio_backbone_name, audio_hidden_size=128):
super(WatermelonModelModular, self).__init__()
# Audio backbone setup
self.audio_backbone_name = audio_backbone_name
self.audio_hidden_size = audio_hidden_size
self.audio_input_size = 376 # From MFCC dimensions
audio_config = AUDIO_BACKBONES[audio_backbone_name]
self.audio_backbone = audio_config["model"](self.audio_input_size, self.audio_hidden_size)
audio_output_dim = audio_config["output_dim"](self.audio_hidden_size)
self.audio_fc = torch.nn.Linear(audio_output_dim, 128)
# Image backbone setup
self.image_backbone_name = image_backbone_name
image_config = IMAGE_BACKBONES[image_backbone_name]
self.image_backbone = image_config["model"](weights=image_config["weights"])
# Replace final layer for all image backbones to get features
if image_backbone_name.startswith("resnet"):
self.image_output_dim = image_config["output_dim"](self.image_backbone)
self.image_backbone.fc = torch.nn.Identity()
elif image_backbone_name.startswith("efficientnet"):
self.image_output_dim = image_config["output_dim"](self.image_backbone)
self.image_backbone.classifier = torch.nn.Identity()
elif image_backbone_name.startswith("convnext"):
self.image_output_dim = image_config["output_dim"](self.image_backbone)
self.image_backbone.classifier = torch.nn.Identity()
elif image_backbone_name.startswith("swin"):
self.image_output_dim = image_config["output_dim"](self.image_backbone)
self.image_backbone.head = torch.nn.Identity()
self.image_fc = torch.nn.Linear(self.image_output_dim, 128)
# Fully connected layers for final prediction
self.fc1 = torch.nn.Linear(256, 64)
self.fc2 = torch.nn.Linear(64, 1)
self.relu = torch.nn.ReLU()
def forward(self, mfcc, image):
# Audio backbone processing
if self.audio_backbone_name == "lstm" or self.audio_backbone_name == "gru":
audio_output, _ = self.audio_backbone(mfcc)
audio_output = audio_output[:, -1, :] # Use the output of the last time step
elif self.audio_backbone_name == "bidirectional_lstm":
audio_output, _ = self.audio_backbone(mfcc)
audio_output = audio_output[:, -1, :] # Use the output of the last time step
elif self.audio_backbone_name == "transformer":
audio_output = self.audio_backbone(mfcc)
audio_output = audio_output.mean(dim=1) # Average pooling over sequence length
audio_output = self.audio_fc(audio_output)
# Image backbone processing
image_output = self.image_backbone(image)
image_output = self.image_fc(image_output)
# Concatenate audio and image outputs
merged = torch.cat((audio_output, image_output), dim=1)
# Fully connected layers
output = self.relu(self.fc1(merged))
output = self.fc2(output)
return output
def evaluate_model(data_dir, image_backbone, audio_backbone, audio_hidden_size=128, save_model_dir=None):
# Adjust batch size based on model complexity to avoid OOM errors
adjusted_batch_size = batch_size
# Models that typically require more memory get smaller batch sizes
if image_backbone in ["swin_b", "convnext_base"] or audio_backbone in ["transformer", "bidirectional_lstm"]:
adjusted_batch_size = max(4, batch_size // 2) # At least batch size of 4, but reduce by half if needed
print(f"\033[92mINFO\033[0m: Adjusted batch size to {adjusted_batch_size} for larger model")
# Create dataset
dataset = WatermelonDataset(data_dir)
n_samples = len(dataset)
# Split dataset
train_size = int(0.7 * n_samples)
val_size = int(0.2 * n_samples)
test_size = n_samples - train_size - val_size
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, val_size, test_size]
)
train_loader = DataLoader(train_dataset, batch_size=adjusted_batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=adjusted_batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=adjusted_batch_size, shuffle=False)
# Initialize model
model = WatermelonModelModular(image_backbone, audio_backbone, audio_hidden_size).to(device)
# Loss function and optimizer
criterion = torch.nn.MSELoss()
mae_criterion = torch.nn.L1Loss() # For MAE evaluation
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
print(f"\033[92mINFO\033[0m: Evaluating model with {image_backbone} (image) and {audio_backbone} (audio)")
print(f"\033[92mINFO\033[0m: Training samples: {len(train_dataset)}")
print(f"\033[92mINFO\033[0m: Validation samples: {len(val_dataset)}")
print(f"\033[92mINFO\033[0m: Test samples: {len(test_dataset)}")
print(f"\033[92mINFO\033[0m: Batch size: {adjusted_batch_size}")
# Training loop
print(f"\033[92mINFO\033[0m: Training for evaluation...")
model.train()
running_loss = 0.0
# Wrap with tqdm for progress visualization
train_iterator = tqdm(train_loader, desc="Training")
for i, (mfcc, image, label) in enumerate(train_iterator):
try:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
optimizer.zero_grad()
output = model(mfcc, image)
label = label.view(-1, 1).float()
loss = criterion(output, label)
loss.backward()
optimizer.step()
running_loss += loss.item()
train_iterator.set_postfix({"Loss": f"{loss.item():.4f}"})
# Clear memory after each batch
if device.type == 'cuda':
del mfcc, image, label, output, loss
torch.cuda.empty_cache()
except Exception as e:
print(f"\033[91mERR!\033[0m: Error in training batch {i}: {e}")
# Clear memory in case of error
if device.type == 'cuda':
torch.cuda.empty_cache()
continue
# Validation phase
print(f"\033[92mINFO\033[0m: Validating...")
model.eval()
val_loss = 0.0
val_mae = 0.0
val_iterator = tqdm(val_loader, desc="Validation")
with torch.no_grad():
for i, (mfcc, image, label) in enumerate(val_iterator):
try:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
output = model(mfcc, image)
label = label.view(-1, 1).float()
# Calculate MSE loss
loss = criterion(output, label)
val_loss += loss.item()
# Calculate MAE
mae = mae_criterion(output, label)
val_mae += mae.item()
val_iterator.set_postfix({"MSE": f"{loss.item():.4f}", "MAE": f"{mae.item():.4f}"})
# Clear memory after each batch
if device.type == 'cuda':
del mfcc, image, label, output, loss, mae
torch.cuda.empty_cache()
except Exception as e:
print(f"\033[91mERR!\033[0m: Error in validation batch {i}: {e}")
# Clear memory in case of error
if device.type == 'cuda':
torch.cuda.empty_cache()
continue
avg_val_loss = val_loss / len(val_loader) if len(val_loader) > 0 else float('inf')
avg_val_mae = val_mae / len(val_loader) if len(val_loader) > 0 else float('inf')
# Test phase
print(f"\033[92mINFO\033[0m: Testing...")
model.eval()
test_loss = 0.0
test_mae = 0.0
test_iterator = tqdm(test_loader, desc="Testing")
with torch.no_grad():
for i, (mfcc, image, label) in enumerate(test_iterator):
try:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
output = model(mfcc, image)
label = label.view(-1, 1).float()
# Calculate MSE loss
loss = criterion(output, label)
test_loss += loss.item()
# Calculate MAE
mae = mae_criterion(output, label)
test_mae += mae.item()
test_iterator.set_postfix({"MSE": f"{loss.item():.4f}", "MAE": f"{mae.item():.4f}"})
# Clear memory after each batch
if device.type == 'cuda':
del mfcc, image, label, output, loss, mae
torch.cuda.empty_cache()
except Exception as e:
print(f"\033[91mERR!\033[0m: Error in test batch {i}: {e}")
# Clear memory in case of error
if device.type == 'cuda':
torch.cuda.empty_cache()
continue
avg_test_loss = test_loss / len(test_loader) if len(test_loader) > 0 else float('inf')
avg_test_mae = test_mae / len(test_loader) if len(test_loader) > 0 else float('inf')
results = {
"image_backbone": image_backbone,
"audio_backbone": audio_backbone,
"validation_mse": avg_val_loss,
"validation_mae": avg_val_mae,
"test_mse": avg_test_loss,
"test_mae": avg_test_mae
}
print(f"\033[92mINFO\033[0m: Evaluation Results:")
print(f"Image Backbone: {image_backbone}")
print(f"Audio Backbone: {audio_backbone}")
print(f"Validation MSE: {avg_val_loss:.4f}")
print(f"Validation MAE: {avg_val_mae:.4f}")
print(f"Test MSE: {avg_test_loss:.4f}")
print(f"Test MAE: {avg_test_mae:.4f}")
# Save model if save_model_dir is provided
if save_model_dir:
os.makedirs(save_model_dir, exist_ok=True)
model_filename = f"{image_backbone}_{audio_backbone}_model.pt"
model_path = os.path.join(save_model_dir, model_filename)
torch.save(model.state_dict(), model_path)
print(f"\033[92mINFO\033[0m: Model saved to {model_path}")
# Add model path to results
results["model_path"] = model_path
# Clean up memory before returning
if device.type == 'cuda':
del model, optimizer, criterion, mae_criterion
torch.cuda.empty_cache()
return results
def evaluate_all_combinations(data_dir, image_backbones=None, audio_backbones=None, save_model_dir="test_models", results_file="backbone_evaluation_results.json"):
if image_backbones is None:
image_backbones = list(IMAGE_BACKBONES.keys())
if audio_backbones is None:
audio_backbones = list(AUDIO_BACKBONES.keys())
# Create directory for saving models
if save_model_dir:
os.makedirs(save_model_dir, exist_ok=True)
# Load previous results if the file exists
results = []
evaluated_combinations = set()
if os.path.exists(results_file):
try:
with open(results_file, 'r') as f:
results = json.load(f)
evaluated_combinations = {(r["image_backbone"], r["audio_backbone"]) for r in results}
print(f"\033[92mINFO\033[0m: Loaded {len(results)} previous results from {results_file}")
except Exception as e:
print(f"\033[91mERR!\033[0m: Error loading previous results from {results_file}: {e}")
results = []
evaluated_combinations = set()
else:
print(f"\033[93mWARN\033[0m: Results file '{results_file}' does not exist. Starting with empty results.")
# Create combinations to evaluate, skipping any that have already been evaluated
combinations = [(img, aud) for img in image_backbones for aud in audio_backbones
if (img, aud) not in evaluated_combinations]
if len(combinations) < len(image_backbones) * len(audio_backbones):
print(f"\033[92mINFO\033[0m: Skipping {len(evaluated_combinations)} already evaluated combinations")
print(f"\033[92mINFO\033[0m: Will evaluate {len(combinations)} combinations")
for image_backbone, audio_backbone in combinations:
print(f"\033[92mINFO\033[0m: Evaluating {image_backbone} + {audio_backbone}")
try:
# Clean GPU memory before each model evaluation
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared before evaluation")
# Print memory usage for debugging
print(f"\033[92mINFO\033[0m: CUDA memory allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"\033[92mINFO\033[0m: CUDA memory reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
result = evaluate_model(data_dir, image_backbone, audio_backbone, save_model_dir=save_model_dir)
results.append(result)
# Save results after each evaluation
save_results(results, results_file)
print(f"\033[92mINFO\033[0m: Updated results saved to {results_file}")
# Force garbage collection to free memory
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared after evaluation")
# Print memory usage for debugging
print(f"\033[92mINFO\033[0m: CUDA memory allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"\033[92mINFO\033[0m: CUDA memory reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
except Exception as e:
print(f"\033[91mERR!\033[0m: Error evaluating {image_backbone} + {audio_backbone}: {e}")
print(f"\033[91mERR!\033[0m: To continue from this point, use --start_from={image_backbone}:{audio_backbone}")
# Force garbage collection to free memory even if there's an error
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared after error")
continue
# Sort results by test MAE (ascending)
results.sort(key=lambda x: x["test_mae"])
# Save final sorted results
save_results(results, results_file)
print("\n\033[92mINFO\033[0m: === FINAL RESULTS (Sorted by Test MAE) ===")
print(f"{'Image Backbone':<20} {'Audio Backbone':<20} {'Val MAE':<10} {'Test MAE':<10}")
print("="*60)
for result in results:
print(f"{result['image_backbone']:<20} {result['audio_backbone']:<20} {result['validation_mae']:<10.4f} {result['test_mae']:<10.4f}")
return results
def save_results(results, filename="backbone_evaluation_results.json"):
"""Save evaluation results to a JSON file."""
with open(filename, 'w') as f:
json.dump(results, f, indent=4)
print(f"\033[92mINFO\033[0m: Results saved to {filename}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Evaluate Different Backbones for Watermelon Sweetness Prediction")
parser.add_argument(
"--data_dir",
type=str,
default="../cleaned",
help="Path to the cleaned dataset directory"
)
parser.add_argument(
"--image_backbone",
type=str,
default=None,
help="Specific image backbone to evaluate (leave empty to evaluate all available)"
)
parser.add_argument(
"--audio_backbone",
type=str,
default=None,
help="Specific audio backbone to evaluate (leave empty to evaluate all available)"
)
parser.add_argument(
"--evaluate_all",
action="store_true",
help="Evaluate all combinations of backbones"
)
parser.add_argument(
"--start_from",
type=str,
default=None,
help="Start evaluation from a specific combination, format: 'image_backbone:audio_backbone'"
)
parser.add_argument(
"--prioritize_efficient",
action="store_true",
help="Prioritize more efficient models first to avoid memory issues"
)
parser.add_argument(
"--results_file",
type=str,
default="backbone_evaluation_results.json",
help="File to save the evaluation results"
)
parser.add_argument(
"--load_previous_results",
action="store_true",
help="Load previous results from results_file if it exists"
)
parser.add_argument(
"--model_dir",
type=str,
default="test_models",
help="Directory to save model checkpoints"
)
args = parser.parse_args()
# Create model directory if it doesn't exist
if args.model_dir:
os.makedirs(args.model_dir, exist_ok=True)
print(f"\033[92mINFO\033[0m: === Available Image Backbones ===")
for name in IMAGE_BACKBONES.keys():
print(f"- {name}")
print(f"\033[92mINFO\033[0m: === Available Audio Backbones ===")
for name in AUDIO_BACKBONES.keys():
print(f"- {name}")
if args.evaluate_all:
evaluate_all_combinations(args.data_dir, results_file=args.results_file, save_model_dir=args.model_dir)
elif args.image_backbone and args.audio_backbone:
result = evaluate_model(args.data_dir, args.image_backbone, args.audio_backbone, save_model_dir=args.model_dir)
save_results([result], args.results_file)
else:
# Define a default set of backbones to evaluate if not specified
if args.prioritize_efficient:
# Start with less memory-intensive models
image_backbones = ["resnet50", "efficientnet_b0", "resnet101", "efficientnet_b3", "convnext_base", "swin_b"]
audio_backbones = ["lstm", "gru", "bidirectional_lstm", "transformer"]
else:
# Default selection focusing on better performance models
image_backbones = ["resnet101", "efficientnet_b3", "swin_b"]
audio_backbones = ["lstm", "bidirectional_lstm", "transformer"]
# Create all combinations
combinations = [(img, aud) for img in image_backbones for aud in audio_backbones]
# Load previous results if requested and file exists
previous_results = []
previous_combinations = set()
if args.load_previous_results:
try:
if os.path.exists(args.results_file):
with open(args.results_file, 'r') as f:
previous_results = json.load(f)
previous_combinations = {(r["image_backbone"], r["audio_backbone"]) for r in previous_results}
print(f"\033[92mINFO\033[0m: Loaded {len(previous_results)} previous results")
else:
print(f"\033[93mWARN\033[0m: Results file '{args.results_file}' does not exist. Starting with empty results.")
except Exception as e:
print(f"\033[91mERR!\033[0m: Error loading previous results: {e}")
previous_results = []
previous_combinations = set()
# If starting from a specific point
if args.start_from:
try:
start_img, start_aud = args.start_from.split(':')
start_idx = combinations.index((start_img, start_aud))
combinations = combinations[start_idx:]
print(f"\033[92mINFO\033[0m: Starting from combination: {start_img} (image) + {start_aud} (audio)")
except (ValueError, IndexError):
print(f"\033[91mERR!\033[0m: Invalid start_from format or combination not found. Format should be 'image_backbone:audio_backbone'")
print(f"\033[91mERR!\033[0m: Continuing with all combinations.")
# Skip combinations that have already been evaluated
if previous_combinations:
original_count = len(combinations)
combinations = [(img, aud) for img, aud in combinations if (img, aud) not in previous_combinations]
print(f"\033[92mINFO\033[0m: Skipping {original_count - len(combinations)} already evaluated combinations")
# Evaluate each combination
results = previous_results.copy()
for img_backbone, audio_backbone in combinations:
print(f"\033[92mINFO\033[0m: Evaluating {img_backbone} + {audio_backbone}")
try:
# Clean GPU memory before each model evaluation
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared before evaluation")
print(f"\033[92mINFO\033[0m: CUDA memory allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"\033[92mINFO\033[0m: CUDA memory reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
result = evaluate_model(args.data_dir, img_backbone, audio_backbone, save_model_dir=args.model_dir)
results.append(result)
# Save results after each evaluation
save_results(results, args.results_file)
# Force garbage collection to free memory
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared after evaluation")
print(f"\033[92mINFO\033[0m: CUDA memory allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"\033[92mINFO\033[0m: CUDA memory reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
except Exception as e:
print(f"\033[91mERR!\033[0m: Error evaluating {img_backbone} + {audio_backbone}: {e}")
print(f"\033[91mERR!\033[0m: To continue from this point later, use --start_from={img_backbone}:{audio_backbone}")
# Force garbage collection to free memory even if there's an error
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared after error")
continue
# Sort results by test MAE (ascending)
results.sort(key=lambda x: x["test_mae"])
# Save final sorted results
save_results(results, args.results_file)
print("\n\033[92mINFO\033[0m: === FINAL RESULTS (Sorted by Test MAE) ===")
print(f"{'Image Backbone':<20} {'Audio Backbone':<20} {'Val MAE':<10} {'Test MAE':<10}")
print("="*60)
for result in results:
print(f"{result['image_backbone']:<20} {result['audio_backbone']:<20} {result['validation_mae']:<10.4f} {result['test_mae']:<10.4f}")