Spaces:
Sleeping
Sleeping
File size: 28,554 Bytes
6f4e394 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
import os
import torch
import torchaudio
import torchvision
import numpy as np
import time
import json
from torch.utils.data import Dataset, DataLoader
import sys
from tqdm import tqdm
# Add parent directory to path to import the preprocess functions
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from preprocess import process_audio_data, process_image_data
# Print library versions
print(f"\033[92mINFO\033[0m: PyTorch version: {torch.__version__}")
print(f"\033[92mINFO\033[0m: Torchaudio version: {torchaudio.__version__}")
print(f"\033[92mINFO\033[0m: Torchvision version: {torchvision.__version__}")
# Device selection
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")
# Hyperparameters
batch_size = 16
epochs = 1 # Just one epoch for evaluation
learning_rate = 0.0001
class WatermelonDataset(Dataset):
def __init__(self, data_dir):
self.data_dir = data_dir
self.samples = []
# Walk through the directory structure
for sweetness_dir in os.listdir(data_dir):
sweetness = float(sweetness_dir)
sweetness_path = os.path.join(data_dir, sweetness_dir)
if os.path.isdir(sweetness_path):
for id_dir in os.listdir(sweetness_path):
id_path = os.path.join(sweetness_path, id_dir)
if os.path.isdir(id_path):
audio_file = os.path.join(id_path, f"{id_dir}.wav")
image_file = os.path.join(id_path, f"{id_dir}.jpg")
if os.path.exists(audio_file) and os.path.exists(image_file):
self.samples.append((audio_file, image_file, sweetness))
print(f"\033[92mINFO\033[0m: Loaded {len(self.samples)} samples from {data_dir}")
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
audio_path, image_path, label = self.samples[idx]
# Load and process audio
try:
waveform, sample_rate = torchaudio.load(audio_path)
mfcc = process_audio_data(waveform, sample_rate)
# Load and process image
image = torchvision.io.read_image(image_path)
image = image.float()
processed_image = process_image_data(image)
return mfcc, processed_image, torch.tensor(label).float()
except Exception as e:
print(f"\033[91mERR!\033[0m: Error processing sample {idx}: {e}")
# Return a fallback sample or skip this sample
# For simplicity, we'll return the first sample again
if idx == 0: # Prevent infinite recursion
raise e
return self.__getitem__(0)
# Define available backbone models
IMAGE_BACKBONES = {
"resnet50": {
"model": torchvision.models.resnet50,
"weights": torchvision.models.ResNet50_Weights.DEFAULT,
"output_dim": lambda model: model.fc.in_features
},
"efficientnet_b0": {
"model": torchvision.models.efficientnet_b0,
"weights": torchvision.models.EfficientNet_B0_Weights.DEFAULT,
"output_dim": lambda model: model.classifier[1].in_features
},
"efficientnet_b3": {
"model": torchvision.models.efficientnet_b3,
"weights": torchvision.models.EfficientNet_B3_Weights.DEFAULT,
"output_dim": lambda model: model.classifier[1].in_features
}
}
AUDIO_BACKBONES = {
"lstm": {
"model": lambda input_size, hidden_size: torch.nn.LSTM(
input_size=input_size, hidden_size=hidden_size, num_layers=2, batch_first=True
),
"output_dim": lambda hidden_size: hidden_size
},
"gru": {
"model": lambda input_size, hidden_size: torch.nn.GRU(
input_size=input_size, hidden_size=hidden_size, num_layers=2, batch_first=True
),
"output_dim": lambda hidden_size: hidden_size
},
"bidirectional_lstm": {
"model": lambda input_size, hidden_size: torch.nn.LSTM(
input_size=input_size, hidden_size=hidden_size, num_layers=2, batch_first=True, bidirectional=True
),
"output_dim": lambda hidden_size: hidden_size * 2 # * 2 because bidirectional
},
"transformer": {
"model": lambda input_size, hidden_size: torch.nn.TransformerEncoder(
torch.nn.TransformerEncoderLayer(
d_model=input_size, nhead=8, dim_feedforward=hidden_size, batch_first=True
),
num_layers=2
),
"output_dim": lambda hidden_size: 376 # Using input_size (mfcc dimensions)
}
}
class WatermelonModelModular(torch.nn.Module):
def __init__(self, image_backbone_name, audio_backbone_name, audio_hidden_size=128):
super(WatermelonModelModular, self).__init__()
# Audio backbone setup
self.audio_backbone_name = audio_backbone_name
self.audio_hidden_size = audio_hidden_size
self.audio_input_size = 376 # From MFCC dimensions
audio_config = AUDIO_BACKBONES[audio_backbone_name]
self.audio_backbone = audio_config["model"](self.audio_input_size, self.audio_hidden_size)
audio_output_dim = audio_config["output_dim"](self.audio_hidden_size)
self.audio_fc = torch.nn.Linear(audio_output_dim, 128)
# Image backbone setup
self.image_backbone_name = image_backbone_name
image_config = IMAGE_BACKBONES[image_backbone_name]
self.image_backbone = image_config["model"](weights=image_config["weights"])
# Replace final layer for all image backbones to get features
if image_backbone_name.startswith("resnet"):
self.image_output_dim = image_config["output_dim"](self.image_backbone)
self.image_backbone.fc = torch.nn.Identity()
elif image_backbone_name.startswith("efficientnet"):
self.image_output_dim = image_config["output_dim"](self.image_backbone)
self.image_backbone.classifier = torch.nn.Identity()
elif image_backbone_name.startswith("convnext"):
self.image_output_dim = image_config["output_dim"](self.image_backbone)
self.image_backbone.classifier = torch.nn.Identity()
elif image_backbone_name.startswith("swin"):
self.image_output_dim = image_config["output_dim"](self.image_backbone)
self.image_backbone.head = torch.nn.Identity()
self.image_fc = torch.nn.Linear(self.image_output_dim, 128)
# Fully connected layers for final prediction
self.fc1 = torch.nn.Linear(256, 64)
self.fc2 = torch.nn.Linear(64, 1)
self.relu = torch.nn.ReLU()
def forward(self, mfcc, image):
# Audio backbone processing
if self.audio_backbone_name == "lstm" or self.audio_backbone_name == "gru":
audio_output, _ = self.audio_backbone(mfcc)
audio_output = audio_output[:, -1, :] # Use the output of the last time step
elif self.audio_backbone_name == "bidirectional_lstm":
audio_output, _ = self.audio_backbone(mfcc)
audio_output = audio_output[:, -1, :] # Use the output of the last time step
elif self.audio_backbone_name == "transformer":
audio_output = self.audio_backbone(mfcc)
audio_output = audio_output.mean(dim=1) # Average pooling over sequence length
audio_output = self.audio_fc(audio_output)
# Image backbone processing
image_output = self.image_backbone(image)
image_output = self.image_fc(image_output)
# Concatenate audio and image outputs
merged = torch.cat((audio_output, image_output), dim=1)
# Fully connected layers
output = self.relu(self.fc1(merged))
output = self.fc2(output)
return output
def evaluate_model(data_dir, image_backbone, audio_backbone, audio_hidden_size=128, save_model_dir=None):
# Adjust batch size based on model complexity to avoid OOM errors
adjusted_batch_size = batch_size
# Models that typically require more memory get smaller batch sizes
if image_backbone in ["swin_b", "convnext_base"] or audio_backbone in ["transformer", "bidirectional_lstm"]:
adjusted_batch_size = max(4, batch_size // 2) # At least batch size of 4, but reduce by half if needed
print(f"\033[92mINFO\033[0m: Adjusted batch size to {adjusted_batch_size} for larger model")
# Create dataset
dataset = WatermelonDataset(data_dir)
n_samples = len(dataset)
# Split dataset
train_size = int(0.7 * n_samples)
val_size = int(0.2 * n_samples)
test_size = n_samples - train_size - val_size
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, val_size, test_size]
)
train_loader = DataLoader(train_dataset, batch_size=adjusted_batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=adjusted_batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=adjusted_batch_size, shuffle=False)
# Initialize model
model = WatermelonModelModular(image_backbone, audio_backbone, audio_hidden_size).to(device)
# Loss function and optimizer
criterion = torch.nn.MSELoss()
mae_criterion = torch.nn.L1Loss() # For MAE evaluation
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
print(f"\033[92mINFO\033[0m: Evaluating model with {image_backbone} (image) and {audio_backbone} (audio)")
print(f"\033[92mINFO\033[0m: Training samples: {len(train_dataset)}")
print(f"\033[92mINFO\033[0m: Validation samples: {len(val_dataset)}")
print(f"\033[92mINFO\033[0m: Test samples: {len(test_dataset)}")
print(f"\033[92mINFO\033[0m: Batch size: {adjusted_batch_size}")
# Training loop
print(f"\033[92mINFO\033[0m: Training for evaluation...")
model.train()
running_loss = 0.0
# Wrap with tqdm for progress visualization
train_iterator = tqdm(train_loader, desc="Training")
for i, (mfcc, image, label) in enumerate(train_iterator):
try:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
optimizer.zero_grad()
output = model(mfcc, image)
label = label.view(-1, 1).float()
loss = criterion(output, label)
loss.backward()
optimizer.step()
running_loss += loss.item()
train_iterator.set_postfix({"Loss": f"{loss.item():.4f}"})
# Clear memory after each batch
if device.type == 'cuda':
del mfcc, image, label, output, loss
torch.cuda.empty_cache()
except Exception as e:
print(f"\033[91mERR!\033[0m: Error in training batch {i}: {e}")
# Clear memory in case of error
if device.type == 'cuda':
torch.cuda.empty_cache()
continue
# Validation phase
print(f"\033[92mINFO\033[0m: Validating...")
model.eval()
val_loss = 0.0
val_mae = 0.0
val_iterator = tqdm(val_loader, desc="Validation")
with torch.no_grad():
for i, (mfcc, image, label) in enumerate(val_iterator):
try:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
output = model(mfcc, image)
label = label.view(-1, 1).float()
# Calculate MSE loss
loss = criterion(output, label)
val_loss += loss.item()
# Calculate MAE
mae = mae_criterion(output, label)
val_mae += mae.item()
val_iterator.set_postfix({"MSE": f"{loss.item():.4f}", "MAE": f"{mae.item():.4f}"})
# Clear memory after each batch
if device.type == 'cuda':
del mfcc, image, label, output, loss, mae
torch.cuda.empty_cache()
except Exception as e:
print(f"\033[91mERR!\033[0m: Error in validation batch {i}: {e}")
# Clear memory in case of error
if device.type == 'cuda':
torch.cuda.empty_cache()
continue
avg_val_loss = val_loss / len(val_loader) if len(val_loader) > 0 else float('inf')
avg_val_mae = val_mae / len(val_loader) if len(val_loader) > 0 else float('inf')
# Test phase
print(f"\033[92mINFO\033[0m: Testing...")
model.eval()
test_loss = 0.0
test_mae = 0.0
test_iterator = tqdm(test_loader, desc="Testing")
with torch.no_grad():
for i, (mfcc, image, label) in enumerate(test_iterator):
try:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
output = model(mfcc, image)
label = label.view(-1, 1).float()
# Calculate MSE loss
loss = criterion(output, label)
test_loss += loss.item()
# Calculate MAE
mae = mae_criterion(output, label)
test_mae += mae.item()
test_iterator.set_postfix({"MSE": f"{loss.item():.4f}", "MAE": f"{mae.item():.4f}"})
# Clear memory after each batch
if device.type == 'cuda':
del mfcc, image, label, output, loss, mae
torch.cuda.empty_cache()
except Exception as e:
print(f"\033[91mERR!\033[0m: Error in test batch {i}: {e}")
# Clear memory in case of error
if device.type == 'cuda':
torch.cuda.empty_cache()
continue
avg_test_loss = test_loss / len(test_loader) if len(test_loader) > 0 else float('inf')
avg_test_mae = test_mae / len(test_loader) if len(test_loader) > 0 else float('inf')
results = {
"image_backbone": image_backbone,
"audio_backbone": audio_backbone,
"validation_mse": avg_val_loss,
"validation_mae": avg_val_mae,
"test_mse": avg_test_loss,
"test_mae": avg_test_mae
}
print(f"\033[92mINFO\033[0m: Evaluation Results:")
print(f"Image Backbone: {image_backbone}")
print(f"Audio Backbone: {audio_backbone}")
print(f"Validation MSE: {avg_val_loss:.4f}")
print(f"Validation MAE: {avg_val_mae:.4f}")
print(f"Test MSE: {avg_test_loss:.4f}")
print(f"Test MAE: {avg_test_mae:.4f}")
# Save model if save_model_dir is provided
if save_model_dir:
os.makedirs(save_model_dir, exist_ok=True)
model_filename = f"{image_backbone}_{audio_backbone}_model.pt"
model_path = os.path.join(save_model_dir, model_filename)
torch.save(model.state_dict(), model_path)
print(f"\033[92mINFO\033[0m: Model saved to {model_path}")
# Add model path to results
results["model_path"] = model_path
# Clean up memory before returning
if device.type == 'cuda':
del model, optimizer, criterion, mae_criterion
torch.cuda.empty_cache()
return results
def evaluate_all_combinations(data_dir, image_backbones=None, audio_backbones=None, save_model_dir="test_models", results_file="backbone_evaluation_results.json"):
if image_backbones is None:
image_backbones = list(IMAGE_BACKBONES.keys())
if audio_backbones is None:
audio_backbones = list(AUDIO_BACKBONES.keys())
# Create directory for saving models
if save_model_dir:
os.makedirs(save_model_dir, exist_ok=True)
# Load previous results if the file exists
results = []
evaluated_combinations = set()
if os.path.exists(results_file):
try:
with open(results_file, 'r') as f:
results = json.load(f)
evaluated_combinations = {(r["image_backbone"], r["audio_backbone"]) for r in results}
print(f"\033[92mINFO\033[0m: Loaded {len(results)} previous results from {results_file}")
except Exception as e:
print(f"\033[91mERR!\033[0m: Error loading previous results from {results_file}: {e}")
results = []
evaluated_combinations = set()
else:
print(f"\033[93mWARN\033[0m: Results file '{results_file}' does not exist. Starting with empty results.")
# Create combinations to evaluate, skipping any that have already been evaluated
combinations = [(img, aud) for img in image_backbones for aud in audio_backbones
if (img, aud) not in evaluated_combinations]
if len(combinations) < len(image_backbones) * len(audio_backbones):
print(f"\033[92mINFO\033[0m: Skipping {len(evaluated_combinations)} already evaluated combinations")
print(f"\033[92mINFO\033[0m: Will evaluate {len(combinations)} combinations")
for image_backbone, audio_backbone in combinations:
print(f"\033[92mINFO\033[0m: Evaluating {image_backbone} + {audio_backbone}")
try:
# Clean GPU memory before each model evaluation
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared before evaluation")
# Print memory usage for debugging
print(f"\033[92mINFO\033[0m: CUDA memory allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"\033[92mINFO\033[0m: CUDA memory reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
result = evaluate_model(data_dir, image_backbone, audio_backbone, save_model_dir=save_model_dir)
results.append(result)
# Save results after each evaluation
save_results(results, results_file)
print(f"\033[92mINFO\033[0m: Updated results saved to {results_file}")
# Force garbage collection to free memory
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared after evaluation")
# Print memory usage for debugging
print(f"\033[92mINFO\033[0m: CUDA memory allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"\033[92mINFO\033[0m: CUDA memory reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
except Exception as e:
print(f"\033[91mERR!\033[0m: Error evaluating {image_backbone} + {audio_backbone}: {e}")
print(f"\033[91mERR!\033[0m: To continue from this point, use --start_from={image_backbone}:{audio_backbone}")
# Force garbage collection to free memory even if there's an error
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared after error")
continue
# Sort results by test MAE (ascending)
results.sort(key=lambda x: x["test_mae"])
# Save final sorted results
save_results(results, results_file)
print("\n\033[92mINFO\033[0m: === FINAL RESULTS (Sorted by Test MAE) ===")
print(f"{'Image Backbone':<20} {'Audio Backbone':<20} {'Val MAE':<10} {'Test MAE':<10}")
print("="*60)
for result in results:
print(f"{result['image_backbone']:<20} {result['audio_backbone']:<20} {result['validation_mae']:<10.4f} {result['test_mae']:<10.4f}")
return results
def save_results(results, filename="backbone_evaluation_results.json"):
"""Save evaluation results to a JSON file."""
with open(filename, 'w') as f:
json.dump(results, f, indent=4)
print(f"\033[92mINFO\033[0m: Results saved to {filename}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Evaluate Different Backbones for Watermelon Sweetness Prediction")
parser.add_argument(
"--data_dir",
type=str,
default="../cleaned",
help="Path to the cleaned dataset directory"
)
parser.add_argument(
"--image_backbone",
type=str,
default=None,
help="Specific image backbone to evaluate (leave empty to evaluate all available)"
)
parser.add_argument(
"--audio_backbone",
type=str,
default=None,
help="Specific audio backbone to evaluate (leave empty to evaluate all available)"
)
parser.add_argument(
"--evaluate_all",
action="store_true",
help="Evaluate all combinations of backbones"
)
parser.add_argument(
"--start_from",
type=str,
default=None,
help="Start evaluation from a specific combination, format: 'image_backbone:audio_backbone'"
)
parser.add_argument(
"--prioritize_efficient",
action="store_true",
help="Prioritize more efficient models first to avoid memory issues"
)
parser.add_argument(
"--results_file",
type=str,
default="backbone_evaluation_results.json",
help="File to save the evaluation results"
)
parser.add_argument(
"--load_previous_results",
action="store_true",
help="Load previous results from results_file if it exists"
)
parser.add_argument(
"--model_dir",
type=str,
default="test_models",
help="Directory to save model checkpoints"
)
args = parser.parse_args()
# Create model directory if it doesn't exist
if args.model_dir:
os.makedirs(args.model_dir, exist_ok=True)
print(f"\033[92mINFO\033[0m: === Available Image Backbones ===")
for name in IMAGE_BACKBONES.keys():
print(f"- {name}")
print(f"\033[92mINFO\033[0m: === Available Audio Backbones ===")
for name in AUDIO_BACKBONES.keys():
print(f"- {name}")
if args.evaluate_all:
evaluate_all_combinations(args.data_dir, results_file=args.results_file, save_model_dir=args.model_dir)
elif args.image_backbone and args.audio_backbone:
result = evaluate_model(args.data_dir, args.image_backbone, args.audio_backbone, save_model_dir=args.model_dir)
save_results([result], args.results_file)
else:
# Define a default set of backbones to evaluate if not specified
if args.prioritize_efficient:
# Start with less memory-intensive models
image_backbones = ["resnet50", "efficientnet_b0", "resnet101", "efficientnet_b3", "convnext_base", "swin_b"]
audio_backbones = ["lstm", "gru", "bidirectional_lstm", "transformer"]
else:
# Default selection focusing on better performance models
image_backbones = ["resnet101", "efficientnet_b3", "swin_b"]
audio_backbones = ["lstm", "bidirectional_lstm", "transformer"]
# Create all combinations
combinations = [(img, aud) for img in image_backbones for aud in audio_backbones]
# Load previous results if requested and file exists
previous_results = []
previous_combinations = set()
if args.load_previous_results:
try:
if os.path.exists(args.results_file):
with open(args.results_file, 'r') as f:
previous_results = json.load(f)
previous_combinations = {(r["image_backbone"], r["audio_backbone"]) for r in previous_results}
print(f"\033[92mINFO\033[0m: Loaded {len(previous_results)} previous results")
else:
print(f"\033[93mWARN\033[0m: Results file '{args.results_file}' does not exist. Starting with empty results.")
except Exception as e:
print(f"\033[91mERR!\033[0m: Error loading previous results: {e}")
previous_results = []
previous_combinations = set()
# If starting from a specific point
if args.start_from:
try:
start_img, start_aud = args.start_from.split(':')
start_idx = combinations.index((start_img, start_aud))
combinations = combinations[start_idx:]
print(f"\033[92mINFO\033[0m: Starting from combination: {start_img} (image) + {start_aud} (audio)")
except (ValueError, IndexError):
print(f"\033[91mERR!\033[0m: Invalid start_from format or combination not found. Format should be 'image_backbone:audio_backbone'")
print(f"\033[91mERR!\033[0m: Continuing with all combinations.")
# Skip combinations that have already been evaluated
if previous_combinations:
original_count = len(combinations)
combinations = [(img, aud) for img, aud in combinations if (img, aud) not in previous_combinations]
print(f"\033[92mINFO\033[0m: Skipping {original_count - len(combinations)} already evaluated combinations")
# Evaluate each combination
results = previous_results.copy()
for img_backbone, audio_backbone in combinations:
print(f"\033[92mINFO\033[0m: Evaluating {img_backbone} + {audio_backbone}")
try:
# Clean GPU memory before each model evaluation
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared before evaluation")
print(f"\033[92mINFO\033[0m: CUDA memory allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"\033[92mINFO\033[0m: CUDA memory reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
result = evaluate_model(args.data_dir, img_backbone, audio_backbone, save_model_dir=args.model_dir)
results.append(result)
# Save results after each evaluation
save_results(results, args.results_file)
# Force garbage collection to free memory
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared after evaluation")
print(f"\033[92mINFO\033[0m: CUDA memory allocated: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
print(f"\033[92mINFO\033[0m: CUDA memory reserved: {torch.cuda.memory_reserved() / 1024**2:.2f} MB")
except Exception as e:
print(f"\033[91mERR!\033[0m: Error evaluating {img_backbone} + {audio_backbone}: {e}")
print(f"\033[91mERR!\033[0m: To continue from this point later, use --start_from={img_backbone}:{audio_backbone}")
# Force garbage collection to free memory even if there's an error
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"\033[92mINFO\033[0m: CUDA memory cleared after error")
continue
# Sort results by test MAE (ascending)
results.sort(key=lambda x: x["test_mae"])
# Save final sorted results
save_results(results, args.results_file)
print("\n\033[92mINFO\033[0m: === FINAL RESULTS (Sorted by Test MAE) ===")
print(f"{'Image Backbone':<20} {'Audio Backbone':<20} {'Val MAE':<10} {'Test MAE':<10}")
print("="*60)
for result in results:
print(f"{result['image_backbone']:<20} {result['audio_backbone']:<20} {result['validation_mae']:<10.4f} {result['test_mae']:<10.4f}") |