Spaces:
Runtime error
Runtime error
import streamlit as st | |
from streamlit_chat import message | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.document_loaders import PyPDFLoader, DirectoryLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.llms import CTransformers | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
# Function to load documents | |
def load_documents(): | |
loader = DirectoryLoader('data/', glob="*.pdf", loader_cls=PyPDFLoader) | |
documents = loader.load() | |
return documents | |
# Function to split text into chunks | |
def split_text_into_chunks(documents): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
text_chunks = text_splitter.split_documents(documents) | |
return text_chunks | |
# Function to create embeddings | |
def create_embeddings(): | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': "cpu"}) | |
return embeddings | |
# Function to create vector store | |
def create_vector_store(text_chunks, embeddings): | |
vector_store = FAISS.from_documents(text_chunks, embeddings) | |
return vector_store | |
# Function to create LLMS model | |
def create_llms_model(): | |
llm = CTransformers(model="mistral-7b-instruct-v0.1.Q4_K_M.gguf", config={'max_new_tokens': 128, 'temperature': 0.01}) | |
return llm | |
# Initialize Streamlit app | |
st.title("Job Interview Prep ChatBot") | |
st.title("Personalized Job Success Friend") | |
st.markdown('<style>h1{color: orange; text-align: center;}</style>', unsafe_allow_html=True) | |
st.subheader('Get Your Desired Job 💪') | |
st.markdown('<style>h3{color: pink; text-align: center;}</style>', unsafe_allow_html=True) | |
# loading of documents | |
documents = load_documents() | |
# Split text into chunks | |
text_chunks = split_text_into_chunks(documents) | |
# Create embeddings | |
embeddings = create_embeddings() | |
# Create vector store | |
vector_store = create_vector_store(text_chunks, embeddings) | |
# Create LLMS model | |
llm = create_llms_model() | |
# Initialize conversation history | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
if 'generated' not in st.session_state: | |
st.session_state['generated'] = ["Hello! Ask me anything about 🤗"] | |
if 'past' not in st.session_state: | |
st.session_state['past'] = ["Hey! 👋"] | |
# Create memory | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
# Create chain | |
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff', | |
retriever=vector_store.as_retriever(search_kwargs={"k": 2}), | |
memory=memory) | |
# Define chat function | |
def conversation_chat(query): | |
result = chain({"question": query, "chat_history": st.session_state['history']}) | |
st.session_state['history'].append((query, result["answer"])) | |
return result["answer"] | |
# Display chat history | |
reply_container = st.container() | |
container = st.container() | |
with container: | |
with st.form(key='my_form', clear_on_submit=True): | |
user_input = st.text_input("Question:", placeholder="Ask about your Job Interview", key='input') | |
submit_button = st.form_submit_button(label='Send') | |
if submit_button and user_input: | |
output = conversation_chat(user_input) | |
st.session_state['past'].append(user_input) | |
st.session_state['generated'].append(output) | |
if st.session_state['generated']: | |
with reply_container: | |
for i in range(len(st.session_state['generated'])): | |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") | |
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") |