Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1 +1,102 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_chat import message
|
3 |
+
from langchain.chains import ConversationalRetrievalChain
|
4 |
+
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.llms import CTransformers
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
|
11 |
+
# Function to load documents
|
12 |
+
def load_documents():
|
13 |
+
loader = DirectoryLoader('data/', glob="*.pdf", loader_cls=PyPDFLoader)
|
14 |
+
documents = loader.load()
|
15 |
+
return documents
|
16 |
+
|
17 |
+
# Function to split text into chunks
|
18 |
+
def split_text_into_chunks(documents):
|
19 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
20 |
+
text_chunks = text_splitter.split_documents(documents)
|
21 |
+
return text_chunks
|
22 |
+
|
23 |
+
# Function to create embeddings
|
24 |
+
def create_embeddings():
|
25 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': "cpu"})
|
26 |
+
return embeddings
|
27 |
+
|
28 |
+
# Function to create vector store
|
29 |
+
def create_vector_store(text_chunks, embeddings):
|
30 |
+
vector_store = FAISS.from_documents(text_chunks, embeddings)
|
31 |
+
return vector_store
|
32 |
+
|
33 |
+
# Function to create LLMS model
|
34 |
+
def create_llms_model():
|
35 |
+
llm = CTransformers(model="mistral-7b-instruct-v0.1.Q4_K_M.gguf", config={'max_new_tokens': 128, 'temperature': 0.01})
|
36 |
+
return llm
|
37 |
+
|
38 |
+
# Initialize Streamlit app
|
39 |
+
st.title("Job Interview Prep ChatBot")
|
40 |
+
st.title("Personalized Job Success Friend")
|
41 |
+
st.markdown('<style>h1{color: orange; text-align: center;}</style>', unsafe_allow_html=True)
|
42 |
+
st.subheader('Get Your Desired Job 💪')
|
43 |
+
st.markdown('<style>h3{color: pink; text-align: center;}</style>', unsafe_allow_html=True)
|
44 |
+
|
45 |
+
# loading of documents
|
46 |
+
documents = load_documents()
|
47 |
+
|
48 |
+
# Split text into chunks
|
49 |
+
text_chunks = split_text_into_chunks(documents)
|
50 |
+
|
51 |
+
# Create embeddings
|
52 |
+
embeddings = create_embeddings()
|
53 |
+
|
54 |
+
# Create vector store
|
55 |
+
vector_store = create_vector_store(text_chunks, embeddings)
|
56 |
+
|
57 |
+
# Create LLMS model
|
58 |
+
llm = create_llms_model()
|
59 |
+
|
60 |
+
# Initialize conversation history
|
61 |
+
if 'history' not in st.session_state:
|
62 |
+
st.session_state['history'] = []
|
63 |
+
|
64 |
+
if 'generated' not in st.session_state:
|
65 |
+
st.session_state['generated'] = ["Hello! Ask me anything about 🤗"]
|
66 |
+
|
67 |
+
if 'past' not in st.session_state:
|
68 |
+
st.session_state['past'] = ["Hey! 👋"]
|
69 |
+
|
70 |
+
# Create memory
|
71 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
72 |
+
|
73 |
+
# Create chain
|
74 |
+
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
|
75 |
+
retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
|
76 |
+
memory=memory)
|
77 |
+
|
78 |
+
# Define chat function
|
79 |
+
def conversation_chat(query):
|
80 |
+
result = chain({"question": query, "chat_history": st.session_state['history']})
|
81 |
+
st.session_state['history'].append((query, result["answer"]))
|
82 |
+
return result["answer"]
|
83 |
+
|
84 |
+
# Display chat history
|
85 |
+
reply_container = st.container()
|
86 |
+
container = st.container()
|
87 |
+
|
88 |
+
with container:
|
89 |
+
with st.form(key='my_form', clear_on_submit=True):
|
90 |
+
user_input = st.text_input("Question:", placeholder="Ask about your Job Interview", key='input')
|
91 |
+
submit_button = st.form_submit_button(label='Send')
|
92 |
+
|
93 |
+
if submit_button and user_input:
|
94 |
+
output = conversation_chat(user_input)
|
95 |
+
st.session_state['past'].append(user_input)
|
96 |
+
st.session_state['generated'].append(output)
|
97 |
+
|
98 |
+
if st.session_state['generated']:
|
99 |
+
with reply_container:
|
100 |
+
for i in range(len(st.session_state['generated'])):
|
101 |
+
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
|
102 |
+
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
|