Spaces:
Runtime error
Runtime error
import os | |
import sys | |
from pathlib import Path | |
current_file_path = Path(__file__).resolve() | |
sys.path.insert(0, str(current_file_path.parent.parent)) | |
import warnings | |
warnings.filterwarnings("ignore") # ignore warning | |
import re | |
import argparse | |
from datetime import datetime | |
from tqdm import tqdm | |
import torch | |
from torchvision.utils import save_image | |
from diffusers.models import AutoencoderKL | |
from transformers import T5EncoderModel, T5Tokenizer | |
from diffusion.model.utils import prepare_prompt_ar | |
from diffusion import IDDPM, DPMS, SASolverSampler | |
from tools.download import find_model | |
from diffusion.model.nets import PixArtMS_XL_2, PixArt_XL_2 | |
from diffusion.data.datasets import get_chunks | |
from diffusion.data.datasets.utils import * | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--image_size', default=1024, type=int) | |
parser.add_argument('--version', default='sigma', type=str) | |
parser.add_argument( | |
"--pipeline_load_from", default='output/pretrained_models/pixart_sigma_sdxlvae_T5_diffusers', | |
type=str, help="Download for loading text_encoder, " | |
"tokenizer and vae from https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers" | |
) | |
parser.add_argument('--txt_file', default='asset/samples.txt', type=str) | |
parser.add_argument('--model_path', default='output/pretrained_models/PixArt-XL-2-1024x1024.pth', type=str) | |
parser.add_argument('--sdvae', action='store_true', help='sd vae') | |
parser.add_argument('--bs', default=1, type=int) | |
parser.add_argument('--cfg_scale', default=4.5, type=float) | |
parser.add_argument('--sampling_algo', default='dpm-solver', type=str, choices=['iddpm', 'dpm-solver', 'sa-solver']) | |
parser.add_argument('--seed', default=0, type=int) | |
parser.add_argument('--dataset', default='custom', type=str) | |
parser.add_argument('--step', default=-1, type=int) | |
parser.add_argument('--save_name', default='test_sample', type=str) | |
return parser.parse_args() | |
def set_env(seed=0): | |
torch.manual_seed(seed) | |
torch.set_grad_enabled(False) | |
for _ in range(30): | |
torch.randn(1, 4, args.image_size, args.image_size) | |
def visualize(items, bs, sample_steps, cfg_scale): | |
for chunk in tqdm(list(get_chunks(items, bs)), unit='batch'): | |
prompts = [] | |
if bs == 1: | |
save_path = os.path.join(save_root, f"{prompts[0][:100]}.jpg") | |
if os.path.exists(save_path): | |
continue | |
prompt_clean, _, hw, ar, custom_hw = prepare_prompt_ar(chunk[0], base_ratios, device=device, show=False) # ar for aspect ratio | |
if args.image_size == 1024: | |
latent_size_h, latent_size_w = int(hw[0, 0] // 8), int(hw[0, 1] // 8) | |
else: | |
hw = torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1) | |
ar = torch.tensor([[1.]], device=device).repeat(bs, 1) | |
latent_size_h, latent_size_w = latent_size, latent_size | |
prompts.append(prompt_clean.strip()) | |
else: | |
hw = torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1) | |
ar = torch.tensor([[1.]], device=device).repeat(bs, 1) | |
for prompt in chunk: | |
prompts.append(prepare_prompt_ar(prompt, base_ratios, device=device, show=False)[0].strip()) | |
latent_size_h, latent_size_w = latent_size, latent_size | |
caption_token = tokenizer(prompts, max_length=max_sequence_length, padding="max_length", truncation=True, | |
return_tensors="pt").to(device) | |
caption_embs = text_encoder(caption_token.input_ids, attention_mask=caption_token.attention_mask)[0] | |
emb_masks = caption_token.attention_mask | |
caption_embs = caption_embs[:, None] | |
null_y = null_caption_embs.repeat(len(prompts), 1, 1)[:, None] | |
print(f'finish embedding') | |
with torch.no_grad(): | |
if args.sampling_algo == 'iddpm': | |
# Create sampling noise: | |
n = len(prompts) | |
z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device).repeat(2, 1, 1, 1) | |
model_kwargs = dict(y=torch.cat([caption_embs, null_y]), | |
cfg_scale=cfg_scale, data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks) | |
diffusion = IDDPM(str(sample_steps)) | |
# Sample images: | |
samples = diffusion.p_sample_loop( | |
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, | |
device=device | |
) | |
samples, _ = samples.chunk(2, dim=0) # Remove null class samples | |
elif args.sampling_algo == 'dpm-solver': | |
# Create sampling noise: | |
n = len(prompts) | |
z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device) | |
model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks) | |
dpm_solver = DPMS(model.forward_with_dpmsolver, | |
condition=caption_embs, | |
uncondition=null_y, | |
cfg_scale=cfg_scale, | |
model_kwargs=model_kwargs) | |
samples = dpm_solver.sample( | |
z, | |
steps=sample_steps, | |
order=2, | |
skip_type="time_uniform", | |
method="multistep", | |
) | |
elif args.sampling_algo == 'sa-solver': | |
# Create sampling noise: | |
n = len(prompts) | |
model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks) | |
sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device) | |
samples = sa_solver.sample( | |
S=25, | |
batch_size=n, | |
shape=(4, latent_size_h, latent_size_w), | |
eta=1, | |
conditioning=caption_embs, | |
unconditional_conditioning=null_y, | |
unconditional_guidance_scale=cfg_scale, | |
model_kwargs=model_kwargs, | |
)[0] | |
samples = samples.to(weight_dtype) | |
samples = vae.decode(samples / vae.config.scaling_factor).sample | |
torch.cuda.empty_cache() | |
# Save images: | |
os.umask(0o000) # file permission: 666; dir permission: 777 | |
for i, sample in enumerate(samples): | |
save_path = os.path.join(save_root, f"{prompts[i][:100]}.jpg") | |
print("Saving path: ", save_path) | |
save_image(sample, save_path, nrow=1, normalize=True, value_range=(-1, 1)) | |
if __name__ == '__main__': | |
args = get_args() | |
# Setup PyTorch: | |
seed = args.seed | |
set_env(seed) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
assert args.sampling_algo in ['iddpm', 'dpm-solver', 'sa-solver'] | |
# only support fixed latent size currently | |
latent_size = args.image_size // 8 | |
max_sequence_length = {"alpha": 120, "sigma": 300}[args.version] | |
pe_interpolation = {256: 0.5, 512: 1, 1024: 2} # trick for positional embedding interpolation | |
micro_condition = True if args.version == 'alpha' and args.image_size == 1024 else False | |
sample_steps_dict = {'iddpm': 100, 'dpm-solver': 20, 'sa-solver': 25} | |
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo] | |
weight_dtype = torch.float16 | |
print(f"Inference with {weight_dtype}") | |
# model setting | |
micro_condition = True if args.version == 'alpha' and args.image_size == 1024 else False | |
if args.image_size in [512, 1024, 2048, 2880]: | |
model = PixArtMS_XL_2( | |
input_size=latent_size, | |
pe_interpolation=pe_interpolation[args.image_size], | |
micro_condition=micro_condition, | |
model_max_length=max_sequence_length, | |
).to(device) | |
else: | |
model = PixArt_XL_2( | |
input_size=latent_size, | |
pe_interpolation=pe_interpolation[args.image_size], | |
model_max_length=max_sequence_length, | |
).to(device) | |
print("Generating sample from ckpt: %s" % args.model_path) | |
state_dict = find_model(args.model_path) | |
if 'pos_embed' in state_dict['state_dict']: | |
del state_dict['state_dict']['pos_embed'] | |
missing, unexpected = model.load_state_dict(state_dict['state_dict'], strict=False) | |
print('Missing keys: ', missing) | |
print('Unexpected keys', unexpected) | |
model.eval() | |
model.to(weight_dtype) | |
base_ratios = eval(f'ASPECT_RATIO_{args.image_size}_TEST') | |
if args.sdvae: | |
# pixart-alpha vae link: https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/sd-vae-ft-ema | |
vae = AutoencoderKL.from_pretrained("output/pretrained_models/sd-vae-ft-ema").to(device).to(weight_dtype) | |
else: | |
# pixart-Sigma vae link: https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers/tree/main/vae | |
vae = AutoencoderKL.from_pretrained(f"{args.pipeline_load_from}/vae").to(device).to(weight_dtype) | |
tokenizer = T5Tokenizer.from_pretrained(args.pipeline_load_from, subfolder="tokenizer") | |
text_encoder = T5EncoderModel.from_pretrained(args.pipeline_load_from, subfolder="text_encoder").to(device) | |
null_caption_token = tokenizer("", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt").to(device) | |
null_caption_embs = text_encoder(null_caption_token.input_ids, attention_mask=null_caption_token.attention_mask)[0] | |
work_dir = os.path.join(*args.model_path.split('/')[:-2]) | |
work_dir = '/'+work_dir if args.model_path[0] == '/' else work_dir | |
# data setting | |
with open(args.txt_file, 'r') as f: | |
items = [item.strip() for item in f.readlines()] | |
# img save setting | |
try: | |
epoch_name = re.search(r'.*epoch_(\d+).*', args.model_path).group(1) | |
step_name = re.search(r'.*step_(\d+).*', args.model_path).group(1) | |
except: | |
epoch_name = 'unknown' | |
step_name = 'unknown' | |
img_save_dir = os.path.join(work_dir, 'vis') | |
os.umask(0o000) # file permission: 666; dir permission: 777 | |
os.makedirs(img_save_dir, exist_ok=True) | |
save_root = os.path.join(img_save_dir, f"{datetime.now().date()}_{args.dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}_step{sample_steps}_size{args.image_size}_bs{args.bs}_samp{args.sampling_algo}_seed{seed}") | |
os.makedirs(save_root, exist_ok=True) | |
visualize(items, args.bs, sample_steps, args.cfg_scale) |