Spaces:
Runtime error
Runtime error
File size: 10,787 Bytes
eadd7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import sys
from pathlib import Path
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
import warnings
warnings.filterwarnings("ignore") # ignore warning
import re
import argparse
from datetime import datetime
from tqdm import tqdm
import torch
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from transformers import T5EncoderModel, T5Tokenizer
from diffusion.model.utils import prepare_prompt_ar
from diffusion import IDDPM, DPMS, SASolverSampler
from tools.download import find_model
from diffusion.model.nets import PixArtMS_XL_2, PixArt_XL_2
from diffusion.data.datasets import get_chunks
from diffusion.data.datasets.utils import *
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--image_size', default=1024, type=int)
parser.add_argument('--version', default='sigma', type=str)
parser.add_argument(
"--pipeline_load_from", default='output/pretrained_models/pixart_sigma_sdxlvae_T5_diffusers',
type=str, help="Download for loading text_encoder, "
"tokenizer and vae from https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers"
)
parser.add_argument('--txt_file', default='asset/samples.txt', type=str)
parser.add_argument('--model_path', default='output/pretrained_models/PixArt-XL-2-1024x1024.pth', type=str)
parser.add_argument('--sdvae', action='store_true', help='sd vae')
parser.add_argument('--bs', default=1, type=int)
parser.add_argument('--cfg_scale', default=4.5, type=float)
parser.add_argument('--sampling_algo', default='dpm-solver', type=str, choices=['iddpm', 'dpm-solver', 'sa-solver'])
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--dataset', default='custom', type=str)
parser.add_argument('--step', default=-1, type=int)
parser.add_argument('--save_name', default='test_sample', type=str)
return parser.parse_args()
def set_env(seed=0):
torch.manual_seed(seed)
torch.set_grad_enabled(False)
for _ in range(30):
torch.randn(1, 4, args.image_size, args.image_size)
@torch.inference_mode()
def visualize(items, bs, sample_steps, cfg_scale):
for chunk in tqdm(list(get_chunks(items, bs)), unit='batch'):
prompts = []
if bs == 1:
save_path = os.path.join(save_root, f"{prompts[0][:100]}.jpg")
if os.path.exists(save_path):
continue
prompt_clean, _, hw, ar, custom_hw = prepare_prompt_ar(chunk[0], base_ratios, device=device, show=False) # ar for aspect ratio
if args.image_size == 1024:
latent_size_h, latent_size_w = int(hw[0, 0] // 8), int(hw[0, 1] // 8)
else:
hw = torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1)
ar = torch.tensor([[1.]], device=device).repeat(bs, 1)
latent_size_h, latent_size_w = latent_size, latent_size
prompts.append(prompt_clean.strip())
else:
hw = torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1)
ar = torch.tensor([[1.]], device=device).repeat(bs, 1)
for prompt in chunk:
prompts.append(prepare_prompt_ar(prompt, base_ratios, device=device, show=False)[0].strip())
latent_size_h, latent_size_w = latent_size, latent_size
caption_token = tokenizer(prompts, max_length=max_sequence_length, padding="max_length", truncation=True,
return_tensors="pt").to(device)
caption_embs = text_encoder(caption_token.input_ids, attention_mask=caption_token.attention_mask)[0]
emb_masks = caption_token.attention_mask
caption_embs = caption_embs[:, None]
null_y = null_caption_embs.repeat(len(prompts), 1, 1)[:, None]
print(f'finish embedding')
with torch.no_grad():
if args.sampling_algo == 'iddpm':
# Create sampling noise:
n = len(prompts)
z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device).repeat(2, 1, 1, 1)
model_kwargs = dict(y=torch.cat([caption_embs, null_y]),
cfg_scale=cfg_scale, data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)
diffusion = IDDPM(str(sample_steps))
# Sample images:
samples = diffusion.p_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True,
device=device
)
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
elif args.sampling_algo == 'dpm-solver':
# Create sampling noise:
n = len(prompts)
z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device)
model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)
dpm_solver = DPMS(model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
cfg_scale=cfg_scale,
model_kwargs=model_kwargs)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
elif args.sampling_algo == 'sa-solver':
# Create sampling noise:
n = len(prompts)
model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)
sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
samples = sa_solver.sample(
S=25,
batch_size=n,
shape=(4, latent_size_h, latent_size_w),
eta=1,
conditioning=caption_embs,
unconditional_conditioning=null_y,
unconditional_guidance_scale=cfg_scale,
model_kwargs=model_kwargs,
)[0]
samples = samples.to(weight_dtype)
samples = vae.decode(samples / vae.config.scaling_factor).sample
torch.cuda.empty_cache()
# Save images:
os.umask(0o000) # file permission: 666; dir permission: 777
for i, sample in enumerate(samples):
save_path = os.path.join(save_root, f"{prompts[i][:100]}.jpg")
print("Saving path: ", save_path)
save_image(sample, save_path, nrow=1, normalize=True, value_range=(-1, 1))
if __name__ == '__main__':
args = get_args()
# Setup PyTorch:
seed = args.seed
set_env(seed)
device = "cuda" if torch.cuda.is_available() else "cpu"
assert args.sampling_algo in ['iddpm', 'dpm-solver', 'sa-solver']
# only support fixed latent size currently
latent_size = args.image_size // 8
max_sequence_length = {"alpha": 120, "sigma": 300}[args.version]
pe_interpolation = {256: 0.5, 512: 1, 1024: 2} # trick for positional embedding interpolation
micro_condition = True if args.version == 'alpha' and args.image_size == 1024 else False
sample_steps_dict = {'iddpm': 100, 'dpm-solver': 20, 'sa-solver': 25}
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
weight_dtype = torch.float16
print(f"Inference with {weight_dtype}")
# model setting
micro_condition = True if args.version == 'alpha' and args.image_size == 1024 else False
if args.image_size in [512, 1024, 2048, 2880]:
model = PixArtMS_XL_2(
input_size=latent_size,
pe_interpolation=pe_interpolation[args.image_size],
micro_condition=micro_condition,
model_max_length=max_sequence_length,
).to(device)
else:
model = PixArt_XL_2(
input_size=latent_size,
pe_interpolation=pe_interpolation[args.image_size],
model_max_length=max_sequence_length,
).to(device)
print("Generating sample from ckpt: %s" % args.model_path)
state_dict = find_model(args.model_path)
if 'pos_embed' in state_dict['state_dict']:
del state_dict['state_dict']['pos_embed']
missing, unexpected = model.load_state_dict(state_dict['state_dict'], strict=False)
print('Missing keys: ', missing)
print('Unexpected keys', unexpected)
model.eval()
model.to(weight_dtype)
base_ratios = eval(f'ASPECT_RATIO_{args.image_size}_TEST')
if args.sdvae:
# pixart-alpha vae link: https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/sd-vae-ft-ema
vae = AutoencoderKL.from_pretrained("output/pretrained_models/sd-vae-ft-ema").to(device).to(weight_dtype)
else:
# pixart-Sigma vae link: https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers/tree/main/vae
vae = AutoencoderKL.from_pretrained(f"{args.pipeline_load_from}/vae").to(device).to(weight_dtype)
tokenizer = T5Tokenizer.from_pretrained(args.pipeline_load_from, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(args.pipeline_load_from, subfolder="text_encoder").to(device)
null_caption_token = tokenizer("", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt").to(device)
null_caption_embs = text_encoder(null_caption_token.input_ids, attention_mask=null_caption_token.attention_mask)[0]
work_dir = os.path.join(*args.model_path.split('/')[:-2])
work_dir = '/'+work_dir if args.model_path[0] == '/' else work_dir
# data setting
with open(args.txt_file, 'r') as f:
items = [item.strip() for item in f.readlines()]
# img save setting
try:
epoch_name = re.search(r'.*epoch_(\d+).*', args.model_path).group(1)
step_name = re.search(r'.*step_(\d+).*', args.model_path).group(1)
except:
epoch_name = 'unknown'
step_name = 'unknown'
img_save_dir = os.path.join(work_dir, 'vis')
os.umask(0o000) # file permission: 666; dir permission: 777
os.makedirs(img_save_dir, exist_ok=True)
save_root = os.path.join(img_save_dir, f"{datetime.now().date()}_{args.dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}_step{sample_steps}_size{args.image_size}_bs{args.bs}_samp{args.sampling_algo}_seed{seed}")
os.makedirs(save_root, exist_ok=True)
visualize(items, args.bs, sample_steps, args.cfg_scale) |