Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
import requests | |
import time | |
import json | |
import base64 | |
import os | |
from io import BytesIO | |
import PIL | |
from PIL.ExifTags import TAGS | |
import html | |
import re | |
batch_count = 1 | |
batch_size = 1 | |
i2i_batch_count = 1 | |
i2i_batch_size = 1 | |
class Prodia: | |
def __init__(self, api_key, base=None): | |
self.base = base or "https://api.prodia.com/v1" | |
self.headers = { | |
"X-Prodia-Key": api_key | |
} | |
def generate(self, params): | |
response = self._post(f"{self.base}/sd/generate", params) | |
return response.json() | |
def transform(self, params): | |
response = self._post(f"{self.base}/sd/transform", params) | |
return response.json() | |
def controlnet(self, params): | |
response = self._post(f"{self.base}/sd/controlnet", params) | |
return response.json() | |
def get_job(self, job_id): | |
response = self._get(f"{self.base}/job/{job_id}") | |
return response.json() | |
def wait(self, job): | |
job_result = job | |
while job_result['status'] not in ['succeeded', 'failed']: | |
time.sleep(0.25) | |
job_result = self.get_job(job['job']) | |
return job_result | |
def list_models(self): | |
response = self._get(f"{self.base}/sd/models") | |
return response.json() | |
def list_samplers(self): | |
response = self._get(f"{self.base}/sd/samplers") | |
return response.json() | |
def _post(self, url, params): | |
headers = { | |
**self.headers, | |
"Content-Type": "application/json" | |
} | |
response = requests.post(url, headers=headers, data=json.dumps(params)) | |
if response.status_code != 200: | |
raise Exception(f"Bad Prodia Response: {response.status_code}") | |
return response | |
def _get(self, url): | |
response = requests.get(url, headers=self.headers) | |
if response.status_code != 200: | |
raise Exception(f"Bad Prodia Response: {response.status_code}") | |
return response | |
def image_to_base64(image): | |
# Convert the image to bytes | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") # You can change format to PNG if needed | |
# Encode the bytes to base64 | |
img_str = base64.b64encode(buffered.getvalue()) | |
return img_str.decode('utf-8') # Convert bytes to string | |
def remove_id_and_ext(text): | |
text = re.sub(r'\[.*\]$', '', text) | |
extension = text[-12:].strip() | |
if extension == "safetensors": | |
text = text[:-13] | |
elif extension == "ckpt": | |
text = text[:-4] | |
return text | |
def get_data(text): | |
results = {} | |
patterns = { | |
'prompt': r'(.*)', | |
'negative_prompt': r'Negative prompt: (.*)', | |
'steps': r'Steps: (\d+),', | |
'seed': r'Seed: (\d+),', | |
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)', | |
'model': r'Model:\s*([^\s,]+)', | |
'cfg_scale': r'CFG scale:\s*([\d\.]+)', | |
'size': r'Size:\s*([0-9]+x[0-9]+)' | |
} | |
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']: | |
match = re.search(patterns[key], text) | |
if match: | |
results[key] = match.group(1) | |
else: | |
results[key] = None | |
if results['size'] is not None: | |
w, h = results['size'].split("x") | |
results['w'] = w | |
results['h'] = h | |
else: | |
results['w'] = None | |
results['h'] = None | |
return results | |
def send_to_txt2img(image): | |
result = {tabs: gr.Tabs.update(selected="t2i")} | |
try: | |
text = image.info['parameters'] | |
data = get_data(text) | |
result[prompt] = gr.update(value=data['prompt']) | |
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update() | |
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update() | |
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update() | |
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update() | |
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update() | |
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update() | |
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update() | |
if model in model_names: | |
result[model] = gr.update(value=model_names[model]) | |
else: | |
result[model] = gr.update() | |
return result | |
except Exception as e: | |
print(e) | |
result[prompt] = gr.update() | |
result[negative_prompt] = gr.update() | |
result[steps] = gr.update() | |
result[seed] = gr.update() | |
result[cfg_scale] = gr.update() | |
result[width] = gr.update() | |
result[height] = gr.update() | |
result[sampler] = gr.update() | |
result[model] = gr.update() | |
return result | |
prodia_client = Prodia(api_key=os.getenv("super_api_key")) | |
model_list = prodia_client.list_models() | |
model_names = {} | |
for model_name in model_list: | |
name_without_ext = remove_id_and_ext(model_name) | |
model_names[name_without_ext] = model_name | |
def txt2img(prompt, negative_prompt, model, width, height): | |
result = prodia_client.generate({ | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"model": model, | |
"steps": 30, | |
"sampler": "DPM++ SDE", | |
"cfg_scale": 7, | |
"width": width, | |
"height": height, | |
"seed": -1 | |
}) | |
job = prodia_client.wait(result) | |
return job["imageUrl"] | |
def img2img(input_image, prompt, negative_prompt, model, width, height): | |
result = prodia_client.transform({ | |
"imageData": image_to_base64(input_image), | |
"denoising_strength": 0.7, | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"model": i2i_model, | |
"steps": 30, | |
"sampler": "DPM++ SDE", | |
"cfg_scale": 7, | |
"width": width, | |
"height": height, | |
"seed": -1 | |
}) | |
job = prodia_client.wait(result) | |
return job["imageUrl"] | |
css = """ | |
#generate { | |
height: 100%; | |
} | |
""" | |
with gr.Blocks(css=css, theme="Base") as demo: | |
gr.HTML(value="<h1><center>🥏 DreamDrop</center></h1>") | |
with gr.Tabs() as tabs: | |
with gr.Tab("Text to Image", id='t2i'): | |
with gr.Row(): | |
with gr.Column(scale=6, min_width=600): | |
prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", lines=2) | |
negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1) | |
with gr.Column(): | |
text_button = gr.Button("Generate", variant='primary', elem_id="generate") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
image_output = gr.Image(label="Result Image") | |
with gr.Row(): | |
with gr.Accordion("⚙️ Settings", open=False): | |
with gr.Column(scale=1): | |
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", | |
show_label=True, label="Model", | |
choices=prodia_client.list_models()) | |
width = gr.Slider(label="↔️ Width", maximum=1024, value=768, step=8) | |
height = gr.Slider(label="↕️ Height", maximum=1024, value=768, step=8) | |
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, width, height], outputs=image_output) | |
with gr.Tab("Image to Image", id='i2i'): | |
with gr.Row(): | |
with gr.Column(scale=6, min_width=600): | |
i2i_prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", lines=3) | |
i2i_negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="text, blurry, fuzziness") | |
with gr.Column(): | |
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
i2i_image_input = gr.Image(label="Input Image", type="pil") | |
with gr.Column(scale=2): | |
i2i_image_output = gr.Image(label="Result Image") | |
with gr.Row(): | |
with gr.Accordion("⚙️ Settings", open=False): | |
with gr.Column(scale=1): | |
i2i_model = gr.Dropdown(interactive=True, | |
value="absolutereality_v181.safetensors [3d9d4d2b]", | |
show_label=True, label="Model", | |
choices=prodia_client.list_models()) | |
with gr.Column(scale=1): | |
i2i_width = gr.Slider(label="↔️ Width", maximum=1024, value=768, step=8) | |
i2i_height = gr.Slider(label="↕️ Height", maximum=1024, value=768, step=8) | |
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_prompt, i2i_negative_prompt, model, i2i_width, i2i_height], outputs=i2i_image_output) | |
demo.queue(concurrency_count=64, max_size=30, api_open=False).launch(max_threads=256, show_api=False) | |