Spaces:
Runtime error
Runtime error
ehristoforu
commited on
Commit
•
7fb7561
1
Parent(s):
47461ee
Upload 3 files
Browse files- README (7).md +11 -0
- app (3).py +266 -0
- requirements (3).txt +5 -0
README (7).md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: DreamDrop
|
3 |
+
emoji: 🥏
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.47.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
---
|
11 |
+
|
app (3).py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
import base64
|
7 |
+
import os
|
8 |
+
from io import BytesIO
|
9 |
+
import PIL
|
10 |
+
from PIL.ExifTags import TAGS
|
11 |
+
import html
|
12 |
+
import re
|
13 |
+
|
14 |
+
batch_count = 1
|
15 |
+
batch_size = 1
|
16 |
+
|
17 |
+
i2i_batch_count = 1
|
18 |
+
i2i_batch_size = 1
|
19 |
+
|
20 |
+
class Prodia:
|
21 |
+
def __init__(self, api_key, base=None):
|
22 |
+
self.base = base or "https://api.prodia.com/v1"
|
23 |
+
self.headers = {
|
24 |
+
"X-Prodia-Key": api_key
|
25 |
+
}
|
26 |
+
|
27 |
+
def generate(self, params):
|
28 |
+
response = self._post(f"{self.base}/sd/generate", params)
|
29 |
+
return response.json()
|
30 |
+
|
31 |
+
def transform(self, params):
|
32 |
+
response = self._post(f"{self.base}/sd/transform", params)
|
33 |
+
return response.json()
|
34 |
+
|
35 |
+
def controlnet(self, params):
|
36 |
+
response = self._post(f"{self.base}/sd/controlnet", params)
|
37 |
+
return response.json()
|
38 |
+
|
39 |
+
def get_job(self, job_id):
|
40 |
+
response = self._get(f"{self.base}/job/{job_id}")
|
41 |
+
return response.json()
|
42 |
+
|
43 |
+
def wait(self, job):
|
44 |
+
job_result = job
|
45 |
+
|
46 |
+
while job_result['status'] not in ['succeeded', 'failed']:
|
47 |
+
time.sleep(0.25)
|
48 |
+
job_result = self.get_job(job['job'])
|
49 |
+
|
50 |
+
return job_result
|
51 |
+
|
52 |
+
def list_models(self):
|
53 |
+
response = self._get(f"{self.base}/sd/models")
|
54 |
+
return response.json()
|
55 |
+
|
56 |
+
def list_samplers(self):
|
57 |
+
response = self._get(f"{self.base}/sd/samplers")
|
58 |
+
return response.json()
|
59 |
+
|
60 |
+
def _post(self, url, params):
|
61 |
+
headers = {
|
62 |
+
**self.headers,
|
63 |
+
"Content-Type": "application/json"
|
64 |
+
}
|
65 |
+
response = requests.post(url, headers=headers, data=json.dumps(params))
|
66 |
+
|
67 |
+
if response.status_code != 200:
|
68 |
+
raise Exception(f"Bad Prodia Response: {response.status_code}")
|
69 |
+
|
70 |
+
return response
|
71 |
+
|
72 |
+
def _get(self, url):
|
73 |
+
response = requests.get(url, headers=self.headers)
|
74 |
+
|
75 |
+
if response.status_code != 200:
|
76 |
+
raise Exception(f"Bad Prodia Response: {response.status_code}")
|
77 |
+
|
78 |
+
return response
|
79 |
+
|
80 |
+
|
81 |
+
def image_to_base64(image):
|
82 |
+
# Convert the image to bytes
|
83 |
+
buffered = BytesIO()
|
84 |
+
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
85 |
+
|
86 |
+
# Encode the bytes to base64
|
87 |
+
img_str = base64.b64encode(buffered.getvalue())
|
88 |
+
|
89 |
+
return img_str.decode('utf-8') # Convert bytes to string
|
90 |
+
|
91 |
+
def remove_id_and_ext(text):
|
92 |
+
text = re.sub(r'\[.*\]$', '', text)
|
93 |
+
extension = text[-12:].strip()
|
94 |
+
if extension == "safetensors":
|
95 |
+
text = text[:-13]
|
96 |
+
elif extension == "ckpt":
|
97 |
+
text = text[:-4]
|
98 |
+
return text
|
99 |
+
|
100 |
+
def get_data(text):
|
101 |
+
results = {}
|
102 |
+
patterns = {
|
103 |
+
'prompt': r'(.*)',
|
104 |
+
'negative_prompt': r'Negative prompt: (.*)',
|
105 |
+
'steps': r'Steps: (\d+),',
|
106 |
+
'seed': r'Seed: (\d+),',
|
107 |
+
'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
|
108 |
+
'model': r'Model:\s*([^\s,]+)',
|
109 |
+
'cfg_scale': r'CFG scale:\s*([\d\.]+)',
|
110 |
+
'size': r'Size:\s*([0-9]+x[0-9]+)'
|
111 |
+
}
|
112 |
+
for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
|
113 |
+
match = re.search(patterns[key], text)
|
114 |
+
if match:
|
115 |
+
results[key] = match.group(1)
|
116 |
+
else:
|
117 |
+
results[key] = None
|
118 |
+
if results['size'] is not None:
|
119 |
+
w, h = results['size'].split("x")
|
120 |
+
results['w'] = w
|
121 |
+
results['h'] = h
|
122 |
+
else:
|
123 |
+
results['w'] = None
|
124 |
+
results['h'] = None
|
125 |
+
return results
|
126 |
+
|
127 |
+
def send_to_txt2img(image):
|
128 |
+
|
129 |
+
result = {tabs: gr.Tabs.update(selected="t2i")}
|
130 |
+
|
131 |
+
try:
|
132 |
+
text = image.info['parameters']
|
133 |
+
data = get_data(text)
|
134 |
+
result[prompt] = gr.update(value=data['prompt'])
|
135 |
+
result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
|
136 |
+
result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
|
137 |
+
result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
|
138 |
+
result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
|
139 |
+
result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
|
140 |
+
result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
|
141 |
+
result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
|
142 |
+
if model in model_names:
|
143 |
+
result[model] = gr.update(value=model_names[model])
|
144 |
+
else:
|
145 |
+
result[model] = gr.update()
|
146 |
+
return result
|
147 |
+
|
148 |
+
except Exception as e:
|
149 |
+
print(e)
|
150 |
+
result[prompt] = gr.update()
|
151 |
+
result[negative_prompt] = gr.update()
|
152 |
+
result[steps] = gr.update()
|
153 |
+
result[seed] = gr.update()
|
154 |
+
result[cfg_scale] = gr.update()
|
155 |
+
result[width] = gr.update()
|
156 |
+
result[height] = gr.update()
|
157 |
+
result[sampler] = gr.update()
|
158 |
+
result[model] = gr.update()
|
159 |
+
|
160 |
+
return result
|
161 |
+
|
162 |
+
|
163 |
+
prodia_client = Prodia(api_key=os.getenv("super_api_key"))
|
164 |
+
model_list = prodia_client.list_models()
|
165 |
+
model_names = {}
|
166 |
+
|
167 |
+
for model_name in model_list:
|
168 |
+
name_without_ext = remove_id_and_ext(model_name)
|
169 |
+
model_names[name_without_ext] = model_name
|
170 |
+
|
171 |
+
def txt2img(prompt, negative_prompt, model, width, height):
|
172 |
+
result = prodia_client.generate({
|
173 |
+
"prompt": prompt,
|
174 |
+
"negative_prompt": negative_prompt,
|
175 |
+
"model": model,
|
176 |
+
"steps": 30,
|
177 |
+
"sampler": "DPM++ SDE",
|
178 |
+
"cfg_scale": 7,
|
179 |
+
"width": width,
|
180 |
+
"height": height,
|
181 |
+
"seed": -1
|
182 |
+
})
|
183 |
+
|
184 |
+
job = prodia_client.wait(result)
|
185 |
+
|
186 |
+
return job["imageUrl"]
|
187 |
+
|
188 |
+
def img2img(input_image, prompt, negative_prompt, model, width, height):
|
189 |
+
result = prodia_client.transform({
|
190 |
+
"imageData": image_to_base64(input_image),
|
191 |
+
"denoising_strength": 0.7,
|
192 |
+
"prompt": prompt,
|
193 |
+
"negative_prompt": negative_prompt,
|
194 |
+
"model": i2i_model,
|
195 |
+
"steps": 30,
|
196 |
+
"sampler": "DPM++ SDE",
|
197 |
+
"cfg_scale": 7,
|
198 |
+
"width": width,
|
199 |
+
"height": height,
|
200 |
+
"seed": -1
|
201 |
+
})
|
202 |
+
|
203 |
+
job = prodia_client.wait(result)
|
204 |
+
|
205 |
+
return job["imageUrl"]
|
206 |
+
|
207 |
+
|
208 |
+
css = """
|
209 |
+
#generate {
|
210 |
+
height: 100%;
|
211 |
+
}
|
212 |
+
"""
|
213 |
+
|
214 |
+
with gr.Blocks(css=css, theme="Base") as demo:
|
215 |
+
gr.HTML(value="<h1><center>🥏 DreamDrop</center></h1>")
|
216 |
+
with gr.Tabs() as tabs:
|
217 |
+
with gr.Tab("Text to Image", id='t2i'):
|
218 |
+
with gr.Row():
|
219 |
+
with gr.Column(scale=6, min_width=600):
|
220 |
+
prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", lines=2)
|
221 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1)
|
222 |
+
with gr.Column():
|
223 |
+
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
224 |
+
|
225 |
+
with gr.Row():
|
226 |
+
with gr.Column(scale=2):
|
227 |
+
image_output = gr.Image(label="Result Image")
|
228 |
+
with gr.Row():
|
229 |
+
with gr.Accordion("⚙️ Settings", open=False):
|
230 |
+
with gr.Column(scale=1):
|
231 |
+
model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]",
|
232 |
+
show_label=True, label="Model",
|
233 |
+
choices=prodia_client.list_models())
|
234 |
+
width = gr.Slider(label="↔️ Width", maximum=1024, value=768, step=8)
|
235 |
+
height = gr.Slider(label="↕️ Height", maximum=1024, value=768, step=8)
|
236 |
+
text_button.click(txt2img, inputs=[prompt, negative_prompt, model, width, height], outputs=image_output)
|
237 |
+
|
238 |
+
with gr.Tab("Image to Image", id='i2i'):
|
239 |
+
with gr.Row():
|
240 |
+
with gr.Column(scale=6, min_width=600):
|
241 |
+
i2i_prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", lines=3)
|
242 |
+
i2i_negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="text, blurry, fuzziness")
|
243 |
+
with gr.Column():
|
244 |
+
i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
245 |
+
|
246 |
+
with gr.Row():
|
247 |
+
with gr.Column(scale=3):
|
248 |
+
i2i_image_input = gr.Image(label="Input Image", type="pil")
|
249 |
+
|
250 |
+
with gr.Column(scale=2):
|
251 |
+
i2i_image_output = gr.Image(label="Result Image")
|
252 |
+
with gr.Row():
|
253 |
+
with gr.Accordion("⚙️ Settings", open=False):
|
254 |
+
with gr.Column(scale=1):
|
255 |
+
i2i_model = gr.Dropdown(interactive=True,
|
256 |
+
value="absolutereality_v181.safetensors [3d9d4d2b]",
|
257 |
+
show_label=True, label="Model",
|
258 |
+
choices=prodia_client.list_models())
|
259 |
+
with gr.Column(scale=1):
|
260 |
+
i2i_width = gr.Slider(label="↔️ Width", maximum=1024, value=768, step=8)
|
261 |
+
i2i_height = gr.Slider(label="↕️ Height", maximum=1024, value=768, step=8)
|
262 |
+
|
263 |
+
i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_prompt, i2i_negative_prompt, model, i2i_width, i2i_height], outputs=i2i_image_output)
|
264 |
+
|
265 |
+
|
266 |
+
demo.queue(concurrency_count=64, max_size=30, api_open=False).launch(max_threads=256, show_api=False)
|
requirements (3).txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
gradio
|
3 |
+
requests
|
4 |
+
pillow
|
5 |
+
pyexif
|