Spaces:
Running
Running
File size: 15,481 Bytes
2ae3b27 f9507b3 2ae3b27 014f3a8 9a97f7c 014f3a8 83fdf44 014f3a8 dcad14d 649782b 30e068a 22762e5 56c9bdf 22762e5 56c9bdf 22762e5 dcad14d 30e068a 014f3a8 d25c469 f9507b3 d25c469 fa556f8 08dd3a6 78d92e1 446db64 d25c469 446db64 78d92e1 d25c469 df9540e d25c469 2ae3b27 1521b6f 0ea8496 2ae3b27 90cb6cf 2ae3b27 c3347ca 446db64 c3347ca da8a762 2ae3b27 da8a762 e6d1f05 0ea8496 2ae3b27 da8a762 2ae3b27 90cb6cf 9a97f7c 90cb6cf 5944dae 119b58d 5944dae 119b58d 5944dae 119b58d 5944dae 119b58d 90cb6cf 2ae3b27 da8a762 0c6265c 2ae3b27 72b2069 90cb6cf 2ae3b27 c3347ca c500eaf c3347ca 2ae3b27 c3347ca 2ae3b27 5944dae 22762e5 74cc2fe 7f52ff3 74cc2fe 5944dae 22762e5 2ae3b27 465a9c5 119b58d 74cc2fe 119b58d 2ae3b27 f6f2078 b1c3255 c3347ca 2ae3b27 f6f2078 2ae3b27 f6f2078 2ae3b27 a784078 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import os
import gradio as gr
import pandas as pd
import json
import tempfile
from constants import *
from huggingface_hub import Repository
HF_TOKEN = os.environ.get("HF_TOKEN")
global data_component, filter_component
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
def add_new_eval(
input_file,
model_name_textbox: str,
revision_name_textbox: str,
model_link: str,
):
if input_file is None:
return "Error! Empty file!"
upload_data=json.loads(input_file)
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}"))
csv_data = pd.read_csv(CSV_DIR)
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox
else:
model_name = revision_name_textbox
model_name_list = csv_data['Model Name (clickable)']
name_list = [name.split(']')[0][1:] for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
if model_link == '':
model_name = model_name # no url
else:
model_name = '[' + model_name + '](' + model_link + ')'
# add new data
new_data = [
model_name
]
for key in TASK_INFO:
if key in upload_data:
new_data.append(upload_data[key][0])
else:
new_data.append(0)
csv_data.loc[col] = new_data
csv_data = csv_data.to_csv(CSV_DIR, index=False)
submission_repo.push_to_hub()
return 0
def get_normalized_df(df):
# final_score = df.drop('name', axis=1).sum(axis=1)
# df.insert(1, 'Overall Score', final_score)
normalize_df = df.copy().fillna(0.0)
for column in normalize_df.columns[1:]:
min_val = NORMALIZE_DIC[column]['Min']
max_val = NORMALIZE_DIC[column]['Max']
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val)
return normalize_df
def calculate_selected_score(df, selected_columns):
# selected_score = df[selected_columns].sum(axis=1)
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST]
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST]
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY])
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ])
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any():
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
return selected_score.fillna(0.0)
if selected_quality_score.isna().any().any():
return selected_semantic_score
if selected_semantic_score.isna().any().any():
return selected_quality_score
# print(selected_semantic_score,selected_quality_score )
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
return selected_score.fillna(0.0)
def get_final_score(df, selected_columns):
normalize_df = get_normalized_df(df)
#final_score = normalize_df.drop('name', axis=1).sum(axis=1)
for name in normalize_df.drop('Model Name (clickable)', axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST])
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ])
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
if 'Total Score' in df:
df['Total Score'] = final_score
else:
df.insert(1, 'Total Score', final_score)
if 'Semantic Score' in df:
df['Semantic Score'] = semantic_score
else:
df.insert(2, 'Semantic Score', semantic_score)
if 'Quality Score' in df:
df['Quality Score'] = quality_score
else:
df.insert(3, 'Quality Score', quality_score)
selected_score = calculate_selected_score(normalize_df, selected_columns)
if 'Selected Score' in df:
df['Selected Score'] = selected_score
else:
df.insert(1, 'Selected Score', selected_score)
return df
def get_final_score_quality(df, selected_columns):
normalize_df = get_normalized_df(df)
for name in normalize_df.drop('Model Name (clickable)', axis=1):
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB])
if 'Quality Score' in df:
df['Quality Score'] = quality_score
else:
df.insert(1, 'Quality Score', quality_score)
# selected_score = normalize_df[selected_columns].sum(axis=1) / len(selected_columns)
selected_score = df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns])
if 'Selected Score' in df:
df['Selected Score'] = selected_score
else:
df.insert(1, 'Selected Score', selected_score)
return df
def get_baseline_df():
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(CSV_DIR)
df = get_final_score(df, checkbox_group.value)
df = df.sort_values(by="Selected Score", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
df = df[present_columns]
df = convert_scores_to_percentage(df)
return df
def get_baseline_df_quality():
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(QUALITY_DIR)
df = get_final_score_quality(df, checkbox_group_quality.value)
df = df.sort_values(by="Selected Score", ascending=False)
present_columns = MODEL_INFO_TAB_QUALITY + checkbox_group_quality.value
df = df[present_columns]
df = convert_scores_to_percentage(df)
return df
def get_all_df(selected_columns, dir=CSV_DIR):
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(dir)
df = get_final_score(df, selected_columns)
df = df.sort_values(by="Selected Score", ascending=False)
return df
def get_all_df_quality(selected_columns, dir=QUALITY_DIR):
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(dir)
df = get_final_score_quality(df, selected_columns)
df = df.sort_values(by="Selected Score", ascending=False)
return df
def convert_scores_to_percentage(df):
# 对DataFrame中的每一列(除了'name'列)进行操作
for column in df.columns[1:]: # 假设第一列是'name'
df[column] = round(df[column] * 100,2) # 将分数转换为百分数
df[column] = df[column].astype(str) + '%'
return df
def choose_all_quailty():
return gr.update(value=QUALITY_LIST)
def choose_all_semantic():
return gr.update(value=SEMANTIC_LIST)
def disable_all():
return gr.update(value=[])
def enable_all():
return gr.update(value=TASK_INFO)
def on_filter_model_size_method_change(selected_columns):
updated_data = get_all_df(selected_columns, CSV_DIR)
#print(updated_data)
# columns:
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
updated_data = convert_scores_to_percentage(updated_data)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
# print(updated_data,present_columns,update_datatype)
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component#.value
def on_filter_model_size_method_change_quality(selected_columns):
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR)
#print(updated_data)
# columns:
selected_columns = [item for item in QUALITY_TAB if item in selected_columns]
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Score", ascending=False)
updated_data = convert_scores_to_percentage(updated_data)
updated_headers = present_columns
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
# print(updated_data,present_columns,update_datatype)
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component#.value
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBORAD_INTRODUCTION
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Table 0
with gr.TabItem("📊 VBench", elem_id="vbench-tab-table", id=1):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
)
gr.Markdown(
TABLE_INTRODUCTION
)
with gr.Row():
with gr.Column(scale=0.2):
choosen_q = gr.Button("Select Quality Dimensions")
choosen_s = gr.Button("Select Semantic Dimensions")
# enable_b = gr.Button("Select All")
disable_b = gr.Button("Deselect All")
with gr.Column(scale=0.8):
# selection for column part:
checkbox_group = gr.CheckboxGroup(
choices=TASK_INFO,
value=DEFAULT_INFO,
label="Evaluation Dimension",
interactive=True,
)
data_component = gr.components.Dataframe(
value=get_baseline_df,
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITILE_TYPE,
interactive=False,
visible=True,
)
choosen_q.click(choose_all_quailty, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)
choosen_s.click(choose_all_semantic, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)
# enable_b.click(enable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)
disable_b.click(disable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component)
with gr.TabItem("Video Quaity", elem_id="vbench-tab-table", id=2):
with gr.Accordion("INSTRUCTION", open=False):
citation_button = gr.Textbox(
value=QUALITY_CLAIM_TEXT,
label="",
elem_id="quality-button",
lines=10,
)
with gr.Row():
with gr.Column(scale=1.0):
# selection for column part:
checkbox_group_quality = gr.CheckboxGroup(
choices=QUALITY_TAB,
value=QUALITY_TAB,
label="Evaluation Quality Dimension",
interactive=True,
)
data_component_quality = gr.components.Dataframe(
value=get_baseline_df_quality,
headers=COLUMN_NAMES_QUALITY,
type="pandas",
datatype=DATA_TITILE_TYPE,
interactive=False,
visible=True,
)
checkbox_group_quality.change(fn=on_filter_model_size_method_change_quality, inputs=[checkbox_group_quality], outputs=data_component_quality)
# table 2
with gr.TabItem("📝 About", elem_id="mvbench-tab-table", id=3):
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
# table 3
with gr.TabItem("🚀 Submit here! ", elem_id="mvbench-tab-table", id=4):
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name", placeholder="LaVie"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name", placeholder="LaVie"
)
with gr.Column():
model_link = gr.Textbox(
label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf"
)
with gr.Column():
input_file = gr.components.File(label = "Click to Upload a json File", file_count="single", type='binary')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs = [
input_file,
model_name_textbox,
revision_name_textbox,
model_link,
],
)
def refresh_data():
value1 = get_baseline_df()
return value1
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component)
block.launch() |