ynhe commited on
Commit
30e068a
1 Parent(s): 0c6265c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -80,17 +80,16 @@ def calculate_selected_score(df, selected_columns):
80
  selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST]
81
  selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY])
82
  selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ])
 
 
 
83
  if selected_quality_score.isna().any().any():
84
  return selected_semantic_score
85
  if selected_semantic_score.isna().any().any():
86
  return selected_quality_score
87
  # print(selected_semantic_score,selected_quality_score )
88
  selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
89
-
90
- if selected_score.isna().any().any():
91
- selected_score = [0.0 for _ in range(len(selected_score))]
92
- print( selected_score.isna().any().any(),selected_score)
93
- return selected_score
94
 
95
  def get_final_score(df, selected_columns):
96
  normalize_df = get_normalized_df(df)
 
80
  selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST]
81
  selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY])
82
  selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ])
83
+ if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any():
84
+ selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
85
+ return selected_score.fillna(0.0)
86
  if selected_quality_score.isna().any().any():
87
  return selected_semantic_score
88
  if selected_semantic_score.isna().any().any():
89
  return selected_quality_score
90
  # print(selected_semantic_score,selected_quality_score )
91
  selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
92
+ return selected_score.fillna(0.0)
 
 
 
 
93
 
94
  def get_final_score(df, selected_columns):
95
  normalize_df = get_normalized_df(df)