Sana-1.6B / app.py
VamooseBambel's picture
Update app.py
8913faa verified
raw
history blame
7.17 kB
import os
import yaml
import subprocess
import sys
import spaces
import numpy as np
from nsfw_detector import NSFWDetector, create_error_image
from PIL import Image
import time
# import logging
from threading import Timer
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# Global variables
global_model = None
last_use_time = None
unload_timer = None
TIMEOUT_SECONDS = 120 # 2 minutes
# Clone the repository
if not os.path.exists('Sana'):
subprocess.run(['git', 'clone', 'https://github.com/NVlabs/Sana.git'])
# Change to Sana directory
os.chdir('Sana')
# Workarounds
def modify_builder():
builder_path = 'diffusion/model/builder.py'
with open(builder_path, 'r') as f:
content = f.readlines()
# Find the text_encoder_dict definition
for i, line in enumerate(content):
if 'text_encoder_dict = {' in line:
content.insert(i + 11, ' "unsloth-gemma-2-2b-it": "unsloth/gemma-2-2b-it",\n')
break
with open(builder_path, 'w') as f:
f.writelines(content)
def modify_config():
config_path = 'configs/sana_config/1024ms/Sana_1600M_img1024.yaml'
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
# Update text encoder
config['text_encoder']['text_encoder_name'] = 'unsloth-gemma-2-2b-it'
config['model']['mixed_precision'] = 'bf16'
with open(config_path, 'w') as f:
yaml.dump(config, f, default_flow_style=False)
# Run environment setup commands
setup_commands = [
"pip install torch", # init raw torch
"pip install -U pip", # update pip
"pip install -U xformers==0.0.27.post2 --index-url https://download.pytorch.org/whl/cu121", # fast attn
"pip install pyyaml",
"pip install -e ." # install sana
]
for cmd in setup_commands:
print(f"Running: {cmd}")
subprocess.run(cmd.split())
import torch
import gradio as gr
sys.path.append('.')
# Modify config and builder before importing SanaPipeline
modify_config()
modify_builder()
from Sana.app.sana_pipeline import SanaPipeline
def unload_model():
global global_model, last_use_time
current_time = time.time()
if last_use_time and (current_time - last_use_time) >= TIMEOUT_SECONDS:
# logger.info("Unloading model due to inactivity...")
global_model = None
torch.cuda.empty_cache()
return "Model unloaded due to inactivity"
def reset_timer():
global unload_timer, last_use_time
if unload_timer:
unload_timer.cancel()
last_use_time = time.time()
unload_timer = Timer(TIMEOUT_SECONDS, unload_model)
unload_timer.start()
@spaces.GPU(duration=90)
def generate_image(prompt, height, width, guidance_scale, pag_guidance_scale, num_inference_steps):
global global_model
try:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Load model if needed
if global_model is None:
# logger.info("Loading model...")
global_model = SanaPipeline("configs/sana_config/1024ms/Sana_1600M_img1024.yaml")
global_model.from_pretrained("hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth")
reset_timer()
# Random seed
generator = torch.Generator(device=device).manual_seed(int(time.time()))
image = global_model(
prompt=prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
pag_guidance_scale=pag_guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
)
# Convert tensor to PIL Image
image = ((image[0] + 1) / 2).float().cpu()
image = (image * 255).clamp(0, 255).numpy().astype(np.uint8)
image = Image.fromarray(image.transpose(1, 2, 0))
# Check for NSFW content
detector = NSFWDetector()
is_nsfw, category, confidence = detector.check_image(image)
if category == "SAFE":
return image
else:
# logger.warning(f"NSFW content detected ({category} with {confidence:.2f}% confidence)")
return create_error_image()
except Exception as e:
# logger.error(f"Error in generate_image: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Gradio Interface
with gr.Blocks(theme=gr.themes.Default(), css=""".center-text {text-align: center;}
.footer-link {text-align: center; margin: 20px 0;}
.slider-pad {margin-bottom: 24px;}""") as interface:
with gr.Row(elem_id="banner"):
with gr.Column():
gr.Markdown("# Sana 1.6B", elem_classes="center-text")
gr.Markdown("Generate high-resolution images up to 4096x4096 using the Sana 1.6B model, fast.", elem_classes="center-text")
with gr.Row():
with gr.Column(scale=2):
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=3)
with gr.Row():
with gr.Column():
height = gr.Slider(minimum=512, maximum=4096, step=64, value=1024, label="Height")
width = gr.Slider(minimum=512, maximum=4096, step=64, value=1024, label="Width")
with gr.Column():
guidance_scale = gr.Slider(minimum=1.0, maximum=10.0, step=0.5, value=5.0, label="Guidance Scale")
pag_guidance_scale = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, value=2.0, label="PAG Guidance Scale")
num_inference_steps = gr.Slider(minimum=2, maximum=50, step=1, value=18, label="Number of Steps")
gr.Markdown("*Note: Higher guidance scales provide stronger adherence to the prompt. PAG guidance helps with image-text alignment.*")
gr.Markdown("⏱️ Be patient, the model loads into memory slow first time around.")
generate_btn = gr.Button("Generate", variant="primary")
with gr.Column(scale=2):
output = gr.Image(label="Generated Image", height=512)
# Examples section
gr.Examples(
examples=[
["a cyberpunk cat with a neon sign that says 'Sana'", 1024, 1024, 5.0, 2.0, 18],
["a beautiful sunset over a mountain landscape", 1024, 1024, 5.0, 2.0, 18],
["a futuristic city with flying cars", 1024, 1024, 5.0, 2.0, 18]
],
inputs=[prompt, height, width, guidance_scale, pag_guidance_scale, num_inference_steps],
outputs=output,
fn=generate_image,
)
generate_btn.click(
fn=generate_image,
inputs=[prompt, height, width, guidance_scale, pag_guidance_scale, num_inference_steps],
outputs=output
)
gr.Markdown("[link to model](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px)", elem_classes="center-text footer-link")
# Launch the interface
interface.launch()