Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,168 Bytes
00f2e78 61a2aa3 00f2e78 61a2aa3 00f2e78 61a2aa3 00f2e78 8913faa 00f2e78 61a2aa3 00f2e78 61a2aa3 00f2e78 61a2aa3 00f2e78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os
import yaml
import subprocess
import sys
import spaces
import numpy as np
from nsfw_detector import NSFWDetector, create_error_image
from PIL import Image
import time
# import logging
from threading import Timer
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# Global variables
global_model = None
last_use_time = None
unload_timer = None
TIMEOUT_SECONDS = 120 # 2 minutes
# Clone the repository
if not os.path.exists('Sana'):
subprocess.run(['git', 'clone', 'https://github.com/NVlabs/Sana.git'])
# Change to Sana directory
os.chdir('Sana')
# Workarounds
def modify_builder():
builder_path = 'diffusion/model/builder.py'
with open(builder_path, 'r') as f:
content = f.readlines()
# Find the text_encoder_dict definition
for i, line in enumerate(content):
if 'text_encoder_dict = {' in line:
content.insert(i + 11, ' "unsloth-gemma-2-2b-it": "unsloth/gemma-2-2b-it",\n')
break
with open(builder_path, 'w') as f:
f.writelines(content)
def modify_config():
config_path = 'configs/sana_config/1024ms/Sana_1600M_img1024.yaml'
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
# Update text encoder
config['text_encoder']['text_encoder_name'] = 'unsloth-gemma-2-2b-it'
config['model']['mixed_precision'] = 'bf16'
with open(config_path, 'w') as f:
yaml.dump(config, f, default_flow_style=False)
# Run environment setup commands
setup_commands = [
"pip install torch", # init raw torch
"pip install -U pip", # update pip
"pip install -U xformers==0.0.27.post2 --index-url https://download.pytorch.org/whl/cu121", # fast attn
"pip install pyyaml",
"pip install -e ." # install sana
]
for cmd in setup_commands:
print(f"Running: {cmd}")
subprocess.run(cmd.split())
import torch
import gradio as gr
sys.path.append('.')
# Modify config and builder before importing SanaPipeline
modify_config()
modify_builder()
from Sana.app.sana_pipeline import SanaPipeline
def unload_model():
global global_model, last_use_time
current_time = time.time()
if last_use_time and (current_time - last_use_time) >= TIMEOUT_SECONDS:
# logger.info("Unloading model due to inactivity...")
global_model = None
torch.cuda.empty_cache()
return "Model unloaded due to inactivity"
def reset_timer():
global unload_timer, last_use_time
if unload_timer:
unload_timer.cancel()
last_use_time = time.time()
unload_timer = Timer(TIMEOUT_SECONDS, unload_model)
unload_timer.start()
@spaces.GPU(duration=90)
def generate_image(prompt, height, width, guidance_scale, pag_guidance_scale, num_inference_steps):
global global_model
try:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Load model if needed
if global_model is None:
# logger.info("Loading model...")
global_model = SanaPipeline("configs/sana_config/1024ms/Sana_1600M_img1024.yaml")
global_model.from_pretrained("hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth")
reset_timer()
# Random seed
generator = torch.Generator(device=device).manual_seed(int(time.time()))
image = global_model(
prompt=prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
pag_guidance_scale=pag_guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
)
# Convert tensor to PIL Image
image = ((image[0] + 1) / 2).float().cpu()
image = (image * 255).clamp(0, 255).numpy().astype(np.uint8)
image = Image.fromarray(image.transpose(1, 2, 0))
# Check for NSFW content
detector = NSFWDetector()
is_nsfw, category, confidence = detector.check_image(image)
if category == "SAFE":
return image
else:
# logger.warning(f"NSFW content detected ({category} with {confidence:.2f}% confidence)")
return create_error_image()
except Exception as e:
# logger.error(f"Error in generate_image: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Gradio Interface
with gr.Blocks(theme=gr.themes.Default(), css=""".center-text {text-align: center;}
.footer-link {text-align: center; margin: 20px 0;}
.slider-pad {margin-bottom: 24px;}""") as interface:
with gr.Row(elem_id="banner"):
with gr.Column():
gr.Markdown("# Sana 1.6B", elem_classes="center-text")
gr.Markdown("Generate high-resolution images up to 4096x4096 using the Sana 1.6B model, fast.", elem_classes="center-text")
with gr.Row():
with gr.Column(scale=2):
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=3)
with gr.Row():
with gr.Column():
height = gr.Slider(minimum=512, maximum=4096, step=64, value=1024, label="Height")
width = gr.Slider(minimum=512, maximum=4096, step=64, value=1024, label="Width")
with gr.Column():
guidance_scale = gr.Slider(minimum=1.0, maximum=10.0, step=0.5, value=5.0, label="Guidance Scale")
pag_guidance_scale = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, value=2.0, label="PAG Guidance Scale")
num_inference_steps = gr.Slider(minimum=2, maximum=50, step=1, value=18, label="Number of Steps")
gr.Markdown("*Note: Higher guidance scales provide stronger adherence to the prompt. PAG guidance helps with image-text alignment.*")
gr.Markdown("⏱️ Be patient, the model loads into memory slow first time around.")
generate_btn = gr.Button("Generate", variant="primary")
with gr.Column(scale=2):
output = gr.Image(label="Generated Image", height=512)
# Examples section
gr.Examples(
examples=[
["a cyberpunk cat with a neon sign that says 'Sana'", 1024, 1024, 5.0, 2.0, 18],
["a beautiful sunset over a mountain landscape", 1024, 1024, 5.0, 2.0, 18],
["a futuristic city with flying cars", 1024, 1024, 5.0, 2.0, 18]
],
inputs=[prompt, height, width, guidance_scale, pag_guidance_scale, num_inference_steps],
outputs=output,
fn=generate_image,
)
generate_btn.click(
fn=generate_image,
inputs=[prompt, height, width, guidance_scale, pag_guidance_scale, num_inference_steps],
outputs=output
)
gr.Markdown("[link to model](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px)", elem_classes="center-text footer-link")
# Launch the interface
interface.launch() |