File size: 8,105 Bytes
0105b57
 
 
 
 
 
 
 
 
 
 
337337b
 
f570b2f
af9af6d
0ec386b
68e5120
9a64677
0105b57
 
 
 
 
 
 
 
24b8c6e
55d5adb
e9ec3b8
 
 
af9af6d
 
24b8c6e
f570b2f
337337b
c6378e6
f570b2f
337337b
 
743c7a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337337b
0105b57
 
 
 
 
 
 
545a937
0105b57
0417d4a
 
 
0105b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545a937
0105b57
0417d4a
 
 
0105b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ec386b
0105b57
0417d4a
 
 
0105b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bdacd4
e9ec3b8
55d5adb
 
6408837
 
0105b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9ec3b8
6408837
 
 
0105b57
 
 
 
6408837
0105b57
55d5adb
0105b57
6408837
0105b57
 
 
 
 
6408837
0105b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6408837
 
0105b57
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import gradio as gr
from vllm import LLM, SamplingParams
from PIL import Image
from io import BytesIO
import base64
import requests
from huggingface_hub import login
import torch
import torch.nn.functional as F
import spaces
import json
import gradio as gr
from huggingface_hub import snapshot_download
import os
# from loadimg import load_img
import traceback

login(os.environ.get("HUGGINGFACE_TOKEN"))

repo_id = "mistralai/Pixtral-12B-2409"
sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)
max_tokens_per_img = 4096
max_img_per_msg = 5


title = "# **WIP / DEMO** 🙋🏻‍♂️Welcome to Tonic's Pixtral Model Demo"
description = """
### Join us : 
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
model_path = snapshot_download(repo_id="mistralai/Pixtral-12B-2409", token=HUGGINGFACE_TOKEN)

with open(f'{model_path}/params.json', 'r') as f:
    params = json.load(f)

with open(f'{model_path}/tekken.json', 'r') as f:
    tokenizer_config = json.load(f)

@spaces.GPU()
def initialize_llm():
    try:
        llm = LLM(
            model=repo_id,
            tokenizer_mode="mistral",
            max_model_len=65536,
            max_num_batched_tokens=max_img_per_msg * max_tokens_per_img,
            limit_mm_per_prompt={"image": max_img_per_msg}
        )
        return llm
    except Exception as e:
        print("LLM initialization failed:", e)
        return None

llm = initialize_llm()

def encode_image(image: Image.Image, image_format="PNG") -> str:
    im_file = BytesIO()
    image.save(im_file, format=image_format)
    im_bytes = im_file.getvalue()
    im_64 = base64.b64encode(im_bytes).decode("utf-8")
    return im_64

@spaces.GPU()
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
    if llm is None:
        return "Error: LLM initialization failed. Please try again later."
    
    image = Image.open(BytesIO(requests.get(image_url).content))
    image = image.resize((3844, 2408))
    new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"

    messages = [
        {
            "role": "user",
            "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": new_image_url}}]
        },
    ]

    outputs = llm.chat(messages, sampling_params=sampling_params)

    return outputs[0].outputs[0].text

@spaces.GPU()
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
    if llm is None:
        return "Error: LLM initialization failed. Please try again later."
    
    image1 = Image.open(BytesIO(requests.get(image1_url).content))
    image2 = Image.open(BytesIO(requests.get(image2_url).content))
    image1 = image1.resize((3844, 2408))
    image2 = image2.resize((3844, 2408))
    new_image1_url = f"data:image/png;base64,{encode_image(image1, image_format='PNG')}"
    new_image2_url = f"data:image/png;base64,{encode_image(image2, image_format='PNG')}"

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": prompt},
                {"type": "image_url", "image_url": {"url": new_image1_url}},
                {"type": "image_url", "image_url": {"url": new_image2_url}}
            ]
        },
    ]

    outputs = llm.chat(messages, sampling_params=sampling_params)

    return outputs[0].outputs[0].text

@spaces.GPU()
def calculate_image_similarity(image1_url, image2_url):
    if llm is None:
        return "Error: LLM initialization failed. Please try again later."
    
    image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
    image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
    image1 = image1.resize((224, 224))  # Resize to match model input size
    image2 = image2.resize((224, 224))

    image1_tensor = torch.tensor(list(image1.getdata())).view(1, 3, 224, 224).float() / 255.0
    image2_tensor = torch.tensor(list(image2.getdata())).view(1, 3, 224, 224).float() / 255.0

    with torch.no_grad():
        embedding1 = llm.model.vision_encoder([image1_tensor])
        embedding2 = llm.model.vision_encoder([image2_tensor])

    similarity = F.cosine_similarity(embedding1.mean(dim=0), embedding2.mean(dim=0), dim=0).item()

    return similarity

with gr.Blocks() as demo:
    gr.Markdown(title)
    gr.Markdown("## How it works")
    gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
    gr.Markdown("2. The encoder uses SiLU activation in its feed-forward layers.")
    gr.Markdown("3. The encoded image is used for text generation or similarity comparison.")
    gr.Markdown(
        """
        ## How to use
        1. For Image-to-Text Generation:
           - Enter the URL of an image
           - Provide a prompt describing what you want to know about the image
           - Click "Generate" to get the model's response
        2. For Image Comparison:
           - Enter URLs for two images you want to compare
           - Provide a prompt asking about the comparison
           - Click "Compare" to get the model's analysis
        3. For Image Similarity:
           - Enter URLs for two images you want to compare
           - Click "Calculate Similarity" to get a similarity score between 0 and 1
        """
    )
    gr.Markdown(description)
    with gr.Tabs():
        with gr.TabItem("Image-to-Text Generation"):
            with gr.Row():
                image_url = gr.Text(label="Image URL")
                prompt = gr.Text(label="Prompt")
            generate_button = gr.Button("Generate")
            output = gr.Text(label="Generated Text")
            
            generate_button.click(infer, inputs=[image_url, prompt], outputs=output)
        
        with gr.TabItem("Image Comparison"):
            with gr.Row():
                image1_url = gr.Text(label="Image 1 URL")
                image2_url = gr.Text(label="Image 2 URL")
            comparison_prompt = gr.Text(label="Comparison Prompt")
            compare_button = gr.Button("Compare")
            comparison_output = gr.Text(label="Comparison Result")
            
            compare_button.click(compare_images, inputs=[image1_url, image2_url, comparison_prompt], outputs=comparison_output)

        with gr.TabItem("Image Similarity"):
            with gr.Row():
                sim_image1_url = gr.Text(label="Image 1 URL")
                sim_image2_url = gr.Text(label="Image 2 URL")
            similarity_button = gr.Button("Calculate Similarity")
            similarity_output = gr.Number(label="Similarity Score")

            similarity_button.click(calculate_image_similarity, inputs=[sim_image1_url, sim_image2_url], outputs=similarity_output)
    gr.Markdown("## Model Details")
    gr.Markdown(f"- Model Dimension: {params['dim']}")
    gr.Markdown(f"- Number of Layers: {params['n_layers']}")
    gr.Markdown(f"- Number of Attention Heads: {params['n_heads']}")
    gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
    gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
    gr.Markdown(f"- Number of Vision Encoder Attention Heads: {params['vision_encoder']['num_attention_heads']}")
    gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
    gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")

if __name__ == "__main__":
    demo.launch()