Spaces:
Paused
Paused
add vllm
Browse files
app.py
CHANGED
@@ -41,23 +41,11 @@ with open(f'{model_path}/params.json', 'r') as f:
|
|
41 |
with open(f'{model_path}/tekken.json', 'r') as f:
|
42 |
tokenizer_config = json.load(f)
|
43 |
|
44 |
-
llm =
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
if llm is None:
|
50 |
-
try:
|
51 |
-
llm = LLM(model=repo_id,
|
52 |
-
tokenizer_mode="mistral",
|
53 |
-
max_model_len=65536,
|
54 |
-
max_num_batched_tokens=max_img_per_msg * max_tokens_per_img,
|
55 |
-
limit_mm_per_prompt={"image": max_img_per_msg},
|
56 |
-
dtype="float16",
|
57 |
-
device="cuda" if torch.cuda.is_available() else "cpu")
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Error initializing LLM: {e}")
|
60 |
-
llm = None
|
61 |
|
62 |
|
63 |
def encode_image(image: Image.Image, image_format="PNG") -> str:
|
@@ -67,9 +55,8 @@ def encode_image(image: Image.Image, image_format="PNG") -> str:
|
|
67 |
im_64 = base64.b64encode(im_bytes).decode("utf-8")
|
68 |
return im_64
|
69 |
|
70 |
-
@spaces.GPU(
|
71 |
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
72 |
-
initialize_llm()
|
73 |
if llm is None:
|
74 |
return "Error: LLM initialization failed. Please try again later."
|
75 |
|
@@ -88,9 +75,8 @@ def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
|
88 |
|
89 |
return outputs[0].outputs[0].text
|
90 |
|
91 |
-
@spaces.GPU(
|
92 |
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
93 |
-
initialize_llm()
|
94 |
if llm is None:
|
95 |
return "Error: LLM initialization failed. Please try again later."
|
96 |
|
@@ -118,7 +104,6 @@ def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tq
|
|
118 |
|
119 |
@spaces.GPU(duration=120)
|
120 |
def calculate_image_similarity(image1_url, image2_url):
|
121 |
-
initialize_llm()
|
122 |
if llm is None:
|
123 |
return "Error: LLM initialization failed. Please try again later."
|
124 |
|
@@ -138,7 +123,6 @@ def calculate_image_similarity(image1_url, image2_url):
|
|
138 |
|
139 |
return similarity
|
140 |
|
141 |
-
# Gradio interface
|
142 |
with gr.Blocks() as demo:
|
143 |
gr.Markdown(title)
|
144 |
gr.Markdown("## How it works")
|
|
|
41 |
with open(f'{model_path}/tekken.json', 'r') as f:
|
42 |
tokenizer_config = json.load(f)
|
43 |
|
44 |
+
llm = LLM(model=repo_id,
|
45 |
+
tokenizer_mode="mistral",
|
46 |
+
max_model_len=65536,
|
47 |
+
max_num_batched_tokens=max_img_per_msg * max_tokens_per_img,
|
48 |
+
limit_mm_per_prompt={"image": max_img_per_msg})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
def encode_image(image: Image.Image, image_format="PNG") -> str:
|
|
|
55 |
im_64 = base64.b64encode(im_bytes).decode("utf-8")
|
56 |
return im_64
|
57 |
|
58 |
+
@spaces.GPU()
|
59 |
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
|
|
60 |
if llm is None:
|
61 |
return "Error: LLM initialization failed. Please try again later."
|
62 |
|
|
|
75 |
|
76 |
return outputs[0].outputs[0].text
|
77 |
|
78 |
+
@spaces.GPU()
|
79 |
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
|
|
80 |
if llm is None:
|
81 |
return "Error: LLM initialization failed. Please try again later."
|
82 |
|
|
|
104 |
|
105 |
@spaces.GPU(duration=120)
|
106 |
def calculate_image_similarity(image1_url, image2_url):
|
|
|
107 |
if llm is None:
|
108 |
return "Error: LLM initialization failed. Please try again later."
|
109 |
|
|
|
123 |
|
124 |
return similarity
|
125 |
|
|
|
126 |
with gr.Blocks() as demo:
|
127 |
gr.Markdown(title)
|
128 |
gr.Markdown("## How it works")
|