Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import torch.nn as nn | |
import os | |
# β Define Lightweight CNN Model (Same as trained) | |
class SmallCNN(nn.Module): | |
def __init__(self): | |
super(SmallCNN, self).__init__() | |
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) # Reduced filters | |
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) # Reduced filters | |
self.fc1 = nn.Linear(32 * 8 * 8, 10) # 10-class classification (CIFAR-10) | |
def forward(self, x): | |
x = torch.relu(self.conv1(x)) | |
x = torch.max_pool2d(x, 2) | |
x = torch.relu(self.conv2(x)) | |
x = torch.max_pool2d(x, 2) | |
x = x.view(x.size(0), -1) | |
x = self.fc1(x) | |
return x | |
# β Load the trained model from Hugging Face Space | |
model_path = os.path.join(os.getenv("SPACE_ROOT", ""), "light_cnn_model.pth") | |
# β Initialize model and load weights | |
model = SmallCNN() | |
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) | |
model.eval() | |
# β Define Image Transformation | |
transform = transforms.Compose([ | |
transforms.Resize((32, 32)), # Resize image to 32x32 pixels | |
transforms.ToTensor(), # Convert image to tensor | |
]) | |
# β Define Prediction Function | |
def predict(image): | |
image = transform(image).unsqueeze(0) # Convert image to tensor and add batch dimension | |
with torch.no_grad(): | |
output = model(image) # Forward pass through model | |
prediction = torch.argmax(output, dim=1).item() # Get predicted class | |
return f"Predicted Class: {prediction}" | |
# β Create Gradio Interface | |
interface = gr.Interface( | |
fn=predict, # Function to process image | |
inputs=gr.Image(type="pil"), # User uploads an image | |
outputs="text", # Model returns a text output | |
title="Lightweight CNN Image Classification", | |
description="Upload an image to classify using the trained CNN model.", | |
) | |
# β Launch the Gradio App | |
interface.launch() | |