import gradio as gr import torch import torchvision.transforms as transforms from PIL import Image import torch.nn as nn import os # ✅ Define Lightweight CNN Model (Same as trained) class SmallCNN(nn.Module): def __init__(self): super(SmallCNN, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) # Reduced filters self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) # Reduced filters self.fc1 = nn.Linear(32 * 8 * 8, 10) # 10-class classification (CIFAR-10) def forward(self, x): x = torch.relu(self.conv1(x)) x = torch.max_pool2d(x, 2) x = torch.relu(self.conv2(x)) x = torch.max_pool2d(x, 2) x = x.view(x.size(0), -1) x = self.fc1(x) return x # ✅ Load the trained model from Hugging Face Space model_path = os.path.join(os.getenv("SPACE_ROOT", ""), "light_cnn_model.pth") # ✅ Initialize model and load weights model = SmallCNN() model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) model.eval() # ✅ Define Image Transformation transform = transforms.Compose([ transforms.Resize((32, 32)), # Resize image to 32x32 pixels transforms.ToTensor(), # Convert image to tensor ]) # ✅ Define Prediction Function def predict(image): image = transform(image).unsqueeze(0) # Convert image to tensor and add batch dimension with torch.no_grad(): output = model(image) # Forward pass through model prediction = torch.argmax(output, dim=1).item() # Get predicted class return f"Predicted Class: {prediction}" # ✅ Create Gradio Interface interface = gr.Interface( fn=predict, # Function to process image inputs=gr.Image(type="pil"), # User uploads an image outputs="text", # Model returns a text output title="Lightweight CNN Image Classification", description="Upload an image to classify using the trained CNN model.", ) # ✅ Launch the Gradio App interface.launch()