Spaces:
TirthGPT
/
Runtime error

6tr / libs /sample.py
Zhengyi's picture
init
2a8a75a
import numpy as np
import torch
from imagedream.camera_utils import get_camera_for_index
from imagedream.ldm.util import set_seed, add_random_background
from libs.base_utils import do_resize_content
from imagedream.ldm.models.diffusion.ddim import DDIMSampler
from torchvision import transforms as T
class ImageDreamDiffusion:
def __init__(
self,
model,
device,
dtype,
mode,
num_frames,
camera_views,
ref_position,
random_background=False,
offset_noise=False,
resize_rate=1,
image_size=256,
seed=1234,
) -> None:
assert mode in ["pixel", "local"]
size = image_size
self.seed = seed
batch_size = max(4, num_frames)
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear."
uc = model.get_learned_conditioning([neg_texts]).to(device)
sampler = DDIMSampler(model)
# pre-compute camera matrices
camera = [get_camera_for_index(i).squeeze() for i in camera_views]
camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero
camera = torch.stack(camera)
camera = camera.repeat(batch_size // num_frames, 1).to(device)
self.image_transform = T.Compose(
[
T.Resize((size, size)),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
self.dtype = dtype
self.ref_position = ref_position
self.mode = mode
self.random_background = random_background
self.resize_rate = resize_rate
self.num_frames = num_frames
self.size = size
self.device = device
self.batch_size = batch_size
self.model = model
self.sampler = sampler
self.uc = uc
self.camera = camera
self.offset_noise = offset_noise
@staticmethod
def i2i(
model,
image_size,
prompt,
uc,
sampler,
ip=None,
step=20,
scale=5.0,
batch_size=8,
ddim_eta=0.0,
dtype=torch.float32,
device="cuda",
camera=None,
num_frames=4,
pixel_control=False,
transform=None,
offset_noise=False,
):
""" The function supports additional image prompt.
Args:
model (_type_): the image dream model
image_size (_type_): size of diffusion output (standard 256)
prompt (_type_): text prompt for the image (prompt in type str)
uc (_type_): unconditional vector (tensor in shape [1, 77, 1024])
sampler (_type_): imagedream.ldm.models.diffusion.ddim.DDIMSampler
ip (Image, optional): the image prompt. Defaults to None.
step (int, optional): _description_. Defaults to 20.
scale (float, optional): _description_. Defaults to 7.5.
batch_size (int, optional): _description_. Defaults to 8.
ddim_eta (float, optional): _description_. Defaults to 0.0.
dtype (_type_, optional): _description_. Defaults to torch.float32.
device (str, optional): _description_. Defaults to "cuda".
camera (_type_, optional): camera info in tensor, shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
num_frames (int, optional): _num of frames (views) to generate
pixel_control: whether to use pixel conditioning. Defaults to False, True when using pixel mode
transform: Compose(
Resize(size=(256, 256), interpolation=bilinear, max_size=None, antialias=warn)
ToTensor()
Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
)
"""
ip_raw = ip
if type(prompt) != list:
prompt = [prompt]
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
c = model.get_learned_conditioning(prompt).to(
device
) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05
c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size
uc_ = {"context": uc.repeat(batch_size, 1, 1)}
if camera is not None:
c_["camera"] = uc_["camera"] = (
camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
)
c_["num_frames"] = uc_["num_frames"] = num_frames
if ip is not None:
ip_embed = model.get_learned_image_conditioning(ip).to(
device
) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12
ip_ = ip_embed.repeat(batch_size, 1, 1)
c_["ip"] = ip_
uc_["ip"] = torch.zeros_like(ip_)
if pixel_control:
assert camera is not None
ip = transform(ip).to(
device
) # shape: torch.Size([3, 256, 256]) mean: 0.33, std: 0.37, min: -1.00, max: 1.00
ip_img = model.get_first_stage_encoding(
model.encode_first_stage(ip[None, :, :, :])
) # shape: torch.Size([1, 4, 32, 32]) mean: 0.23, std: 0.77, min: -4.42, max: 3.55
c_["ip_img"] = ip_img
uc_["ip_img"] = torch.zeros_like(ip_img)
shape = [4, image_size // 8, image_size // 8] # [4, 32, 32]
if offset_noise:
ref = transform(ip_raw).to(device)
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)
samples_ddim, _ = (
sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43
S=step,
conditioning=c_,
batch_size=batch_size,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc_,
eta=ddim_eta,
x_T=x_T if offset_noise else None,
)
)
x_sample = model.decode_first_stage(samples_ddim)
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()
return list(x_sample.astype(np.uint8))
def diffuse(self, t, ip, n_test=2):
set_seed(self.seed)
ip = do_resize_content(ip, self.resize_rate)
if self.random_background:
ip = add_random_background(ip)
images = []
for _ in range(n_test):
img = self.i2i(
self.model,
self.size,
t,
self.uc,
self.sampler,
ip=ip,
step=50,
scale=5,
batch_size=self.batch_size,
ddim_eta=0.0,
dtype=self.dtype,
device=self.device,
camera=self.camera,
num_frames=self.num_frames,
pixel_control=(self.mode == "pixel"),
transform=self.image_transform,
offset_noise=self.offset_noise,
)
img = np.concatenate(img, 1)
img = np.concatenate((img, ip.resize((self.size, self.size))), axis=1)
images.append(img)
set_seed() # unset random and numpy seed
return images
class ImageDreamDiffusionStage2:
def __init__(
self,
model,
device,
dtype,
num_frames,
camera_views,
ref_position,
random_background=False,
offset_noise=False,
resize_rate=1,
mode="pixel",
image_size=256,
seed=1234,
) -> None:
assert mode in ["pixel", "local"]
size = image_size
self.seed = seed
batch_size = max(4, num_frames)
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear."
uc = model.get_learned_conditioning([neg_texts]).to(device)
sampler = DDIMSampler(model)
# pre-compute camera matrices
camera = [get_camera_for_index(i).squeeze() for i in camera_views]
if ref_position is not None:
camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero
camera = torch.stack(camera)
camera = camera.repeat(batch_size // num_frames, 1).to(device)
self.image_transform = T.Compose(
[
T.Resize((size, size)),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
self.dtype = dtype
self.mode = mode
self.ref_position = ref_position
self.random_background = random_background
self.resize_rate = resize_rate
self.num_frames = num_frames
self.size = size
self.device = device
self.batch_size = batch_size
self.model = model
self.sampler = sampler
self.uc = uc
self.camera = camera
self.offset_noise = offset_noise
@staticmethod
def i2iStage2(
model,
image_size,
prompt,
uc,
sampler,
pixel_images,
ip=None,
step=20,
scale=5.0,
batch_size=8,
ddim_eta=0.0,
dtype=torch.float32,
device="cuda",
camera=None,
num_frames=4,
pixel_control=False,
transform=None,
offset_noise=False,
):
ip_raw = ip
if type(prompt) != list:
prompt = [prompt]
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
c = model.get_learned_conditioning(prompt).to(
device
) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05
c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size
uc_ = {"context": uc.repeat(batch_size, 1, 1)}
if camera is not None:
c_["camera"] = uc_["camera"] = (
camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
)
c_["num_frames"] = uc_["num_frames"] = num_frames
if ip is not None:
ip_embed = model.get_learned_image_conditioning(ip).to(
device
) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12
ip_ = ip_embed.repeat(batch_size, 1, 1)
c_["ip"] = ip_
uc_["ip"] = torch.zeros_like(ip_)
if pixel_control:
assert camera is not None
transed_pixel_images = torch.stack([transform(i).to(device) for i in pixel_images])
latent_pixel_images = model.get_first_stage_encoding(model.encode_first_stage(transed_pixel_images))
c_["pixel_images"] = latent_pixel_images
uc_["pixel_images"] = torch.zeros_like(latent_pixel_images)
shape = [4, image_size // 8, image_size // 8] # [4, 32, 32]
if offset_noise:
ref = transform(ip_raw).to(device)
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)
samples_ddim, _ = (
sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43
S=step,
conditioning=c_,
batch_size=batch_size,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc_,
eta=ddim_eta,
x_T=x_T if offset_noise else None,
)
)
x_sample = model.decode_first_stage(samples_ddim)
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()
return list(x_sample.astype(np.uint8))
@torch.no_grad()
def diffuse(self, t, ip, pixel_images, n_test=2):
set_seed(self.seed)
ip = do_resize_content(ip, self.resize_rate)
pixel_images = [do_resize_content(i, self.resize_rate) for i in pixel_images]
if self.random_background:
bg_color = np.random.rand() * 255
ip = add_random_background(ip, bg_color)
pixel_images = [add_random_background(i, bg_color) for i in pixel_images]
images = []
for _ in range(n_test):
img = self.i2iStage2(
self.model,
self.size,
t,
self.uc,
self.sampler,
pixel_images=pixel_images,
ip=ip,
step=50,
scale=5,
batch_size=self.batch_size,
ddim_eta=0.0,
dtype=self.dtype,
device=self.device,
camera=self.camera,
num_frames=self.num_frames,
pixel_control=(self.mode == "pixel"),
transform=self.image_transform,
offset_noise=self.offset_noise,
)
img = np.concatenate(img, 1)
img = np.concatenate(
(img, ip.resize((self.size, self.size)), *[i.resize((self.size, self.size)) for i in pixel_images]),
axis=1,
)
images.append(img)
set_seed() # unset random and numpy seed
return images