Spaces:
TirthGPT
/
Runtime error

File size: 14,682 Bytes
2a8a75a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import numpy as np
import torch
from imagedream.camera_utils import get_camera_for_index
from imagedream.ldm.util import set_seed, add_random_background
from libs.base_utils import do_resize_content
from imagedream.ldm.models.diffusion.ddim import DDIMSampler
from torchvision import transforms as T


class ImageDreamDiffusion:
    def __init__(
        self,
        model,
        device,
        dtype,
        mode,
        num_frames,
        camera_views,
        ref_position,
        random_background=False,
        offset_noise=False,
        resize_rate=1,
        image_size=256,
        seed=1234,
    ) -> None:
        assert mode in ["pixel", "local"]
        size = image_size
        self.seed = seed
        batch_size = max(4, num_frames)

        neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated,  obscure, unnatural colors, poor lighting, dull, and unclear."
        uc = model.get_learned_conditioning([neg_texts]).to(device)
        sampler = DDIMSampler(model)

        # pre-compute camera matrices
        camera = [get_camera_for_index(i).squeeze() for i in camera_views]
        camera[ref_position] = torch.zeros_like(camera[ref_position])  # set ref camera to zero
        camera = torch.stack(camera)
        camera = camera.repeat(batch_size // num_frames, 1).to(device)

        self.image_transform = T.Compose(
            [
                T.Resize((size, size)),
                T.ToTensor(),
                T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
            ]
        )
        self.dtype = dtype
        self.ref_position = ref_position
        self.mode = mode
        self.random_background = random_background
        self.resize_rate = resize_rate
        self.num_frames = num_frames
        self.size = size
        self.device = device
        self.batch_size = batch_size
        self.model = model
        self.sampler = sampler
        self.uc = uc
        self.camera = camera
        self.offset_noise = offset_noise

    @staticmethod
    def i2i(
        model,
        image_size,
        prompt,
        uc,
        sampler,
        ip=None,
        step=20,
        scale=5.0,
        batch_size=8,
        ddim_eta=0.0,
        dtype=torch.float32,
        device="cuda",
        camera=None,
        num_frames=4,
        pixel_control=False,
        transform=None,
        offset_noise=False,
    ):
        """ The function supports additional image prompt.
        Args:
            model (_type_): the image dream model
            image_size (_type_): size of diffusion output (standard 256)
            prompt (_type_): text prompt for the image (prompt in type str)
            uc (_type_): unconditional vector (tensor in shape [1, 77, 1024])
            sampler (_type_): imagedream.ldm.models.diffusion.ddim.DDIMSampler
            ip (Image, optional): the image prompt. Defaults to None.
            step (int, optional): _description_. Defaults to 20.
            scale (float, optional): _description_. Defaults to 7.5.
            batch_size (int, optional): _description_. Defaults to 8.
            ddim_eta (float, optional): _description_. Defaults to 0.0.
            dtype (_type_, optional): _description_. Defaults to torch.float32.
            device (str, optional): _description_. Defaults to "cuda".
            camera (_type_, optional): camera info in tensor, shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
            num_frames (int, optional): _num of frames (views) to generate
            pixel_control: whether to use pixel conditioning. Defaults to False, True when using pixel mode
            transform: Compose(
                Resize(size=(256, 256), interpolation=bilinear, max_size=None, antialias=warn)
                ToTensor()
                Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
            )
        """
        ip_raw = ip
        if type(prompt) != list:
            prompt = [prompt]
        with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
            c = model.get_learned_conditioning(prompt).to(
                device
            )  # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05
            c_ = {"context": c.repeat(batch_size, 1, 1)}  # batch_size
            uc_ = {"context": uc.repeat(batch_size, 1, 1)}

            if camera is not None:
                c_["camera"] = uc_["camera"] = (
                    camera  # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
                )
                c_["num_frames"] = uc_["num_frames"] = num_frames

            if ip is not None:
                ip_embed = model.get_learned_image_conditioning(ip).to(
                    device
                )  # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12
                ip_ = ip_embed.repeat(batch_size, 1, 1)
                c_["ip"] = ip_
                uc_["ip"] = torch.zeros_like(ip_)

            if pixel_control:
                assert camera is not None
                ip = transform(ip).to(
                    device
                )  # shape: torch.Size([3, 256, 256]) mean: 0.33, std: 0.37, min: -1.00, max: 1.00
                ip_img = model.get_first_stage_encoding(
                    model.encode_first_stage(ip[None, :, :, :])
                )  # shape: torch.Size([1, 4, 32, 32]) mean: 0.23, std: 0.77, min: -4.42, max: 3.55
                c_["ip_img"] = ip_img
                uc_["ip_img"] = torch.zeros_like(ip_img)

            shape = [4, image_size // 8, image_size // 8]  # [4, 32, 32]
            if offset_noise:
                ref = transform(ip_raw).to(device)
                ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
                ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
                time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
                x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)

            samples_ddim, _ = (
                sampler.sample(  # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43
                    S=step,
                    conditioning=c_,
                    batch_size=batch_size,
                    shape=shape,
                    verbose=False,
                    unconditional_guidance_scale=scale,
                    unconditional_conditioning=uc_,
                    eta=ddim_eta,
                    x_T=x_T if offset_noise else None,
                )
            )

            x_sample = model.decode_first_stage(samples_ddim)
            x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
            x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()

        return list(x_sample.astype(np.uint8))

    def diffuse(self, t, ip, n_test=2):
        set_seed(self.seed)
        ip = do_resize_content(ip, self.resize_rate)
        if self.random_background:
            ip = add_random_background(ip)

        images = []
        for _ in range(n_test):
            img = self.i2i(
                self.model,
                self.size,
                t,
                self.uc,
                self.sampler,
                ip=ip,
                step=50,
                scale=5,
                batch_size=self.batch_size,
                ddim_eta=0.0,
                dtype=self.dtype,
                device=self.device,
                camera=self.camera,
                num_frames=self.num_frames,
                pixel_control=(self.mode == "pixel"),
                transform=self.image_transform,
                offset_noise=self.offset_noise,
            )
            img = np.concatenate(img, 1)
            img = np.concatenate((img, ip.resize((self.size, self.size))), axis=1)
            images.append(img)
        set_seed()  # unset random and numpy seed
        return images


class ImageDreamDiffusionStage2:
    def __init__(
        self,
        model,
        device,
        dtype,
        num_frames,
        camera_views,
        ref_position,
        random_background=False,
        offset_noise=False,
        resize_rate=1,
        mode="pixel",
        image_size=256,
        seed=1234,
    ) -> None:
        assert mode in ["pixel", "local"]

        size = image_size
        self.seed = seed
        batch_size = max(4, num_frames)

        neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated,  obscure, unnatural colors, poor lighting, dull, and unclear."
        uc = model.get_learned_conditioning([neg_texts]).to(device)
        sampler = DDIMSampler(model)

        # pre-compute camera matrices
        camera = [get_camera_for_index(i).squeeze() for i in camera_views]
        if ref_position is not None:
            camera[ref_position] = torch.zeros_like(camera[ref_position])  # set ref camera to zero
        camera = torch.stack(camera)
        camera = camera.repeat(batch_size // num_frames, 1).to(device)

        self.image_transform = T.Compose(
            [
                T.Resize((size, size)),
                T.ToTensor(),
                T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
            ]
        )

        self.dtype = dtype
        self.mode = mode
        self.ref_position = ref_position
        self.random_background = random_background
        self.resize_rate = resize_rate
        self.num_frames = num_frames
        self.size = size
        self.device = device
        self.batch_size = batch_size
        self.model = model
        self.sampler = sampler
        self.uc = uc
        self.camera = camera
        self.offset_noise = offset_noise

    @staticmethod
    def i2iStage2(
        model,
        image_size,
        prompt,
        uc,
        sampler,
        pixel_images,
        ip=None,
        step=20,
        scale=5.0,
        batch_size=8,
        ddim_eta=0.0,
        dtype=torch.float32,
        device="cuda",
        camera=None,
        num_frames=4,
        pixel_control=False,
        transform=None,
        offset_noise=False,
    ):
        ip_raw = ip
        if type(prompt) != list:
            prompt = [prompt]
        with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
            c = model.get_learned_conditioning(prompt).to(
                device
            )  # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05
            c_ = {"context": c.repeat(batch_size, 1, 1)}  # batch_size
            uc_ = {"context": uc.repeat(batch_size, 1, 1)}

            if camera is not None:
                c_["camera"] = uc_["camera"] = (
                    camera  # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
                )
                c_["num_frames"] = uc_["num_frames"] = num_frames

            if ip is not None:
                ip_embed = model.get_learned_image_conditioning(ip).to(
                    device
                )  # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12
                ip_ = ip_embed.repeat(batch_size, 1, 1)
                c_["ip"] = ip_
                uc_["ip"] = torch.zeros_like(ip_)

            if pixel_control:
                assert camera is not None
                
            transed_pixel_images = torch.stack([transform(i).to(device) for i in pixel_images])
            latent_pixel_images = model.get_first_stage_encoding(model.encode_first_stage(transed_pixel_images))

            c_["pixel_images"] = latent_pixel_images
            uc_["pixel_images"] = torch.zeros_like(latent_pixel_images)

            shape = [4, image_size // 8, image_size // 8]  # [4, 32, 32]
            if offset_noise:
                ref = transform(ip_raw).to(device)
                ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
                ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
                time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
                x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)

            samples_ddim, _ = (
                sampler.sample(  # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43
                    S=step,
                    conditioning=c_,
                    batch_size=batch_size,
                    shape=shape,
                    verbose=False,
                    unconditional_guidance_scale=scale,
                    unconditional_conditioning=uc_,
                    eta=ddim_eta,
                    x_T=x_T if offset_noise else None,
                )
            )
            x_sample = model.decode_first_stage(samples_ddim)
            x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
            x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()

        return list(x_sample.astype(np.uint8))

    @torch.no_grad()
    def diffuse(self, t, ip, pixel_images, n_test=2):
        set_seed(self.seed)
        ip = do_resize_content(ip, self.resize_rate)
        pixel_images = [do_resize_content(i, self.resize_rate) for i in pixel_images]

        if self.random_background:
            bg_color = np.random.rand() * 255
            ip = add_random_background(ip, bg_color)
            pixel_images = [add_random_background(i, bg_color) for i in pixel_images]

        images = []
        for _ in range(n_test):
            img = self.i2iStage2(
                self.model,
                self.size,
                t,
                self.uc,
                self.sampler,
                pixel_images=pixel_images,
                ip=ip,
                step=50,
                scale=5,
                batch_size=self.batch_size,
                ddim_eta=0.0,
                dtype=self.dtype,
                device=self.device,
                camera=self.camera,
                num_frames=self.num_frames,
                pixel_control=(self.mode == "pixel"),
                transform=self.image_transform,
                offset_noise=self.offset_noise,
            )
            img = np.concatenate(img, 1)
            img = np.concatenate(
                (img, ip.resize((self.size, self.size)), *[i.resize((self.size, self.size)) for i in pixel_images]),
                axis=1,
            )
            images.append(img)
        set_seed()  # unset random and numpy seed
        return images