Spaces:
Running
Running
import torch | |
import numpy as np | |
from torch.nn import functional as F | |
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): | |
""" | |
Taken from https://github.com/mkocabas/VIBE/blob/master/lib/utils/geometry.py | |
Calculates the rotation matrices for a batch of rotation vectors | |
- param rot_vecs: torch.tensor (N, 3) array of N axis-angle vectors | |
- returns R: torch.tensor (N, 3, 3) rotation matrices | |
""" | |
batch_size = rot_vecs.shape[0] | |
device = rot_vecs.device | |
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) | |
rot_dir = rot_vecs / angle | |
cos = torch.unsqueeze(torch.cos(angle), dim=1) | |
sin = torch.unsqueeze(torch.sin(angle), dim=1) | |
# Bx1 arrays | |
rx, ry, rz = torch.split(rot_dir, 1, dim=1) | |
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) | |
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) | |
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1).view( | |
(batch_size, 3, 3) | |
) | |
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) | |
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) | |
return rot_mat | |
def quaternion_mul(q0, q1): | |
""" | |
EXPECTS WXYZ | |
:param q0 (*, 4) | |
:param q1 (*, 4) | |
""" | |
r0, r1 = q0[..., :1], q1[..., :1] | |
v0, v1 = q0[..., 1:], q1[..., 1:] | |
r = r0 * r1 - (v0 * v1).sum(dim=-1, keepdim=True) | |
v = r0 * v1 + r1 * v0 + torch.linalg.cross(v0, v1) | |
return torch.cat([r, v], dim=-1) | |
def quaternion_inverse(q, eps=1e-8): | |
""" | |
EXPECTS WXYZ | |
:param q (*, 4) | |
""" | |
conj = torch.cat([q[..., :1], -q[..., 1:]], dim=-1) | |
mag = torch.square(q).sum(dim=-1, keepdim=True) + eps | |
return conj / mag | |
def quaternion_slerp(t, q0, q1, eps=1e-8): | |
""" | |
:param t (*, 1) must be between 0 and 1 | |
:param q0 (*, 4) | |
:param q1 (*, 4) | |
""" | |
dims = q0.shape[:-1] | |
t = t.view(*dims, 1) | |
q0 = F.normalize(q0, p=2, dim=-1) | |
q1 = F.normalize(q1, p=2, dim=-1) | |
dot = (q0 * q1).sum(dim=-1, keepdim=True) | |
# make sure we give the shortest rotation path (< 180d) | |
neg = dot < 0 | |
q1 = torch.where(neg, -q1, q1) | |
dot = torch.where(neg, -dot, dot) | |
angle = torch.acos(dot) | |
# if angle is too small, just do linear interpolation | |
collin = torch.abs(dot) > 1 - eps | |
fac = 1 / torch.sin(angle) | |
w0 = torch.where(collin, 1 - t, torch.sin((1 - t) * angle) * fac) | |
w1 = torch.where(collin, t, torch.sin(t * angle) * fac) | |
slerp = q0 * w0 + q1 * w1 | |
return slerp | |
def rotation_matrix_to_angle_axis(rotation_matrix): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert rotation matrix to Rodrigues vector | |
""" | |
quaternion = rotation_matrix_to_quaternion(rotation_matrix) | |
aa = quaternion_to_angle_axis(quaternion) | |
aa[torch.isnan(aa)] = 0.0 | |
return aa | |
def quaternion_to_angle_axis(quaternion): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert quaternion vector to angle axis of rotation. | |
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
:param quaternion (*, 4) expects WXYZ | |
:returns angle_axis (*, 3) | |
""" | |
# unpack input and compute conversion | |
q1 = quaternion[..., 1] | |
q2 = quaternion[..., 2] | |
q3 = quaternion[..., 3] | |
sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3 | |
sin_theta = torch.sqrt(sin_squared_theta) | |
cos_theta = quaternion[..., 0] | |
two_theta = 2.0 * torch.where( | |
cos_theta < 0.0, | |
torch.atan2(-sin_theta, -cos_theta), | |
torch.atan2(sin_theta, cos_theta), | |
) | |
k_pos = two_theta / sin_theta | |
k_neg = 2.0 * torch.ones_like(sin_theta) | |
k = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
angle_axis = torch.zeros_like(quaternion)[..., :3] | |
angle_axis[..., 0] += q1 * k | |
angle_axis[..., 1] += q2 * k | |
angle_axis[..., 2] += q3 * k | |
return angle_axis | |
def angle_axis_to_rotation_matrix(angle_axis): | |
""" | |
:param angle_axis (*, 3) | |
return (*, 3, 3) | |
""" | |
quat = angle_axis_to_quaternion(angle_axis) | |
return quaternion_to_rotation_matrix(quat) | |
def quaternion_to_rotation_matrix(quaternion): | |
""" | |
Convert a quaternion to a rotation matrix. | |
Taken from https://github.com/kornia/kornia, based on | |
https://github.com/matthew-brett/transforms3d/blob/8965c48401d9e8e66b6a8c37c65f2fc200a076fa/transforms3d/quaternions.py#L101 | |
https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/geometry/transformation/rotation_matrix_3d.py#L247 | |
:param quaternion (N, 4) expects WXYZ order | |
returns rotation matrix (N, 3, 3) | |
""" | |
# normalize the input quaternion | |
quaternion_norm = F.normalize(quaternion, p=2, dim=-1, eps=1e-12) | |
*dims, _ = quaternion_norm.shape | |
# unpack the normalized quaternion components | |
w, x, y, z = torch.chunk(quaternion_norm, chunks=4, dim=-1) | |
# compute the actual conversion | |
tx = 2.0 * x | |
ty = 2.0 * y | |
tz = 2.0 * z | |
twx = tx * w | |
twy = ty * w | |
twz = tz * w | |
txx = tx * x | |
txy = ty * x | |
txz = tz * x | |
tyy = ty * y | |
tyz = tz * y | |
tzz = tz * z | |
one = torch.tensor(1.0) | |
matrix = torch.stack( | |
( | |
one - (tyy + tzz), | |
txy - twz, | |
txz + twy, | |
txy + twz, | |
one - (txx + tzz), | |
tyz - twx, | |
txz - twy, | |
tyz + twx, | |
one - (txx + tyy), | |
), | |
dim=-1, | |
).view(*dims, 3, 3) | |
return matrix | |
def angle_axis_to_quaternion(angle_axis): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert angle axis to quaternion in WXYZ order | |
:param angle_axis (*, 3) | |
:returns quaternion (*, 4) WXYZ order | |
""" | |
theta_sq = torch.sum(angle_axis**2, dim=-1, keepdim=True) # (*, 1) | |
# need to handle the zero rotation case | |
valid = theta_sq > 0 | |
theta = torch.sqrt(theta_sq) | |
half_theta = 0.5 * theta | |
ones = torch.ones_like(half_theta) | |
# fill zero with the limit of sin ax / x -> a | |
k = torch.where(valid, torch.sin(half_theta) / theta, 0.5 * ones) | |
w = torch.where(valid, torch.cos(half_theta), ones) | |
quat = torch.cat([w, k * angle_axis], dim=-1) | |
return quat | |
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert rotation matrix to 4d quaternion vector | |
This algorithm is based on algorithm described in | |
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
:param rotation_matrix (N, 3, 3) | |
""" | |
*dims, m, n = rotation_matrix.shape | |
rmat_t = torch.transpose(rotation_matrix.reshape(-1, m, n), -1, -2) | |
mask_d2 = rmat_t[:, 2, 2] < eps | |
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q0 = torch.stack( | |
[ | |
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
t0, | |
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
], | |
-1, | |
) | |
t0_rep = t0.repeat(4, 1).t() | |
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q1 = torch.stack( | |
[ | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
t1, | |
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], | |
], | |
-1, | |
) | |
t1_rep = t1.repeat(4, 1).t() | |
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q2 = torch.stack( | |
[ | |
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], | |
rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], | |
t2, | |
], | |
-1, | |
) | |
t2_rep = t2.repeat(4, 1).t() | |
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q3 = torch.stack( | |
[ | |
t3, | |
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], | |
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], | |
], | |
-1, | |
) | |
t3_rep = t3.repeat(4, 1).t() | |
mask_c0 = mask_d2 * mask_d0_d1 | |
mask_c1 = mask_d2 * ~mask_d0_d1 | |
mask_c2 = ~mask_d2 * mask_d0_nd1 | |
mask_c3 = ~mask_d2 * ~mask_d0_nd1 | |
mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
q /= torch.sqrt( | |
t0_rep * mask_c0 | |
+ t1_rep * mask_c1 | |
+ t2_rep * mask_c2 # noqa | |
+ t3_rep * mask_c3 | |
) # noqa | |
q *= 0.5 | |
return q.reshape(*dims, 4) | |