File size: 8,744 Bytes
5f028d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import torch
import numpy as np
from torch.nn import functional as F


def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32):
    """
    Taken from https://github.com/mkocabas/VIBE/blob/master/lib/utils/geometry.py
    Calculates the rotation matrices for a batch of rotation vectors
    - param rot_vecs: torch.tensor (N, 3) array of N axis-angle vectors
    - returns R: torch.tensor (N, 3, 3) rotation matrices
    """
    batch_size = rot_vecs.shape[0]
    device = rot_vecs.device

    angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
    rot_dir = rot_vecs / angle

    cos = torch.unsqueeze(torch.cos(angle), dim=1)
    sin = torch.unsqueeze(torch.sin(angle), dim=1)

    # Bx1 arrays
    rx, ry, rz = torch.split(rot_dir, 1, dim=1)
    K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)

    zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
    K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1).view(
        (batch_size, 3, 3)
    )

    ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
    rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
    return rot_mat


def quaternion_mul(q0, q1):
    """
    EXPECTS WXYZ
    :param q0 (*, 4)
    :param q1 (*, 4)
    """
    r0, r1 = q0[..., :1], q1[..., :1]
    v0, v1 = q0[..., 1:], q1[..., 1:]
    r = r0 * r1 - (v0 * v1).sum(dim=-1, keepdim=True)
    v = r0 * v1 + r1 * v0 + torch.linalg.cross(v0, v1)
    return torch.cat([r, v], dim=-1)


def quaternion_inverse(q, eps=1e-8):
    """
    EXPECTS WXYZ
    :param q (*, 4)
    """
    conj = torch.cat([q[..., :1], -q[..., 1:]], dim=-1)
    mag = torch.square(q).sum(dim=-1, keepdim=True) + eps
    return conj / mag


def quaternion_slerp(t, q0, q1, eps=1e-8):
    """
    :param t (*, 1)  must be between 0 and 1
    :param q0 (*, 4)
    :param q1 (*, 4)
    """
    dims = q0.shape[:-1]
    t = t.view(*dims, 1)

    q0 = F.normalize(q0, p=2, dim=-1)
    q1 = F.normalize(q1, p=2, dim=-1)
    dot = (q0 * q1).sum(dim=-1, keepdim=True)

    # make sure we give the shortest rotation path (< 180d)
    neg = dot < 0
    q1 = torch.where(neg, -q1, q1)
    dot = torch.where(neg, -dot, dot)
    angle = torch.acos(dot)

    # if angle is too small, just do linear interpolation
    collin = torch.abs(dot) > 1 - eps
    fac = 1 / torch.sin(angle)
    w0 = torch.where(collin, 1 - t, torch.sin((1 - t) * angle) * fac)
    w1 = torch.where(collin, t, torch.sin(t * angle) * fac)
    slerp = q0 * w0 + q1 * w1
    return slerp


def rotation_matrix_to_angle_axis(rotation_matrix):
    """
    This function is borrowed from https://github.com/kornia/kornia

    Convert rotation matrix to Rodrigues vector
    """
    quaternion = rotation_matrix_to_quaternion(rotation_matrix)
    aa = quaternion_to_angle_axis(quaternion)
    aa[torch.isnan(aa)] = 0.0
    return aa


def quaternion_to_angle_axis(quaternion):
    """
    This function is borrowed from https://github.com/kornia/kornia

    Convert quaternion vector to angle axis of rotation.
    Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h

    :param quaternion (*, 4) expects WXYZ
    :returns angle_axis (*, 3)
    """
    # unpack input and compute conversion
    q1 = quaternion[..., 1]
    q2 = quaternion[..., 2]
    q3 = quaternion[..., 3]
    sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3

    sin_theta = torch.sqrt(sin_squared_theta)
    cos_theta = quaternion[..., 0]
    two_theta = 2.0 * torch.where(
        cos_theta < 0.0,
        torch.atan2(-sin_theta, -cos_theta),
        torch.atan2(sin_theta, cos_theta),
    )

    k_pos = two_theta / sin_theta
    k_neg = 2.0 * torch.ones_like(sin_theta)
    k = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)

    angle_axis = torch.zeros_like(quaternion)[..., :3]
    angle_axis[..., 0] += q1 * k
    angle_axis[..., 1] += q2 * k
    angle_axis[..., 2] += q3 * k
    return angle_axis


def angle_axis_to_rotation_matrix(angle_axis):
    """
    :param angle_axis (*, 3)
    return (*, 3, 3)
    """
    quat = angle_axis_to_quaternion(angle_axis)
    return quaternion_to_rotation_matrix(quat)


def quaternion_to_rotation_matrix(quaternion):
    """
    Convert a quaternion to a rotation matrix.
    Taken from https://github.com/kornia/kornia, based on
    https://github.com/matthew-brett/transforms3d/blob/8965c48401d9e8e66b6a8c37c65f2fc200a076fa/transforms3d/quaternions.py#L101
    https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/geometry/transformation/rotation_matrix_3d.py#L247
    :param quaternion (N, 4) expects WXYZ order
    returns rotation matrix (N, 3, 3)
    """
    # normalize the input quaternion
    quaternion_norm = F.normalize(quaternion, p=2, dim=-1, eps=1e-12)
    *dims, _ = quaternion_norm.shape

    # unpack the normalized quaternion components
    w, x, y, z = torch.chunk(quaternion_norm, chunks=4, dim=-1)

    # compute the actual conversion
    tx = 2.0 * x
    ty = 2.0 * y
    tz = 2.0 * z
    twx = tx * w
    twy = ty * w
    twz = tz * w
    txx = tx * x
    txy = ty * x
    txz = tz * x
    tyy = ty * y
    tyz = tz * y
    tzz = tz * z
    one = torch.tensor(1.0)

    matrix = torch.stack(
        (
            one - (tyy + tzz),
            txy - twz,
            txz + twy,
            txy + twz,
            one - (txx + tzz),
            tyz - twx,
            txz - twy,
            tyz + twx,
            one - (txx + tyy),
        ),
        dim=-1,
    ).view(*dims, 3, 3)
    return matrix


def angle_axis_to_quaternion(angle_axis):
    """
    This function is borrowed from https://github.com/kornia/kornia
    Convert angle axis to quaternion in WXYZ order
    :param angle_axis (*, 3)
    :returns quaternion (*, 4) WXYZ order
    """
    theta_sq = torch.sum(angle_axis**2, dim=-1, keepdim=True)  # (*, 1)
    # need to handle the zero rotation case
    valid = theta_sq > 0
    theta = torch.sqrt(theta_sq)
    half_theta = 0.5 * theta
    ones = torch.ones_like(half_theta)
    # fill zero with the limit of sin ax / x -> a
    k = torch.where(valid, torch.sin(half_theta) / theta, 0.5 * ones)
    w = torch.where(valid, torch.cos(half_theta), ones)
    quat = torch.cat([w, k * angle_axis], dim=-1)
    return quat


def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
    """
    This function is borrowed from https://github.com/kornia/kornia
    Convert rotation matrix to 4d quaternion vector
    This algorithm is based on algorithm described in
    https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201

    :param rotation_matrix (N, 3, 3)
    """
    *dims, m, n = rotation_matrix.shape
    rmat_t = torch.transpose(rotation_matrix.reshape(-1, m, n), -1, -2)

    mask_d2 = rmat_t[:, 2, 2] < eps

    mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
    mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]

    t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
    q0 = torch.stack(
        [
            rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
            t0,
            rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
            rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
        ],
        -1,
    )
    t0_rep = t0.repeat(4, 1).t()

    t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
    q1 = torch.stack(
        [
            rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
            rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
            t1,
            rmat_t[:, 1, 2] + rmat_t[:, 2, 1],
        ],
        -1,
    )
    t1_rep = t1.repeat(4, 1).t()

    t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
    q2 = torch.stack(
        [
            rmat_t[:, 0, 1] - rmat_t[:, 1, 0],
            rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
            rmat_t[:, 1, 2] + rmat_t[:, 2, 1],
            t2,
        ],
        -1,
    )
    t2_rep = t2.repeat(4, 1).t()

    t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
    q3 = torch.stack(
        [
            t3,
            rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
            rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
            rmat_t[:, 0, 1] - rmat_t[:, 1, 0],
        ],
        -1,
    )
    t3_rep = t3.repeat(4, 1).t()

    mask_c0 = mask_d2 * mask_d0_d1
    mask_c1 = mask_d2 * ~mask_d0_d1
    mask_c2 = ~mask_d2 * mask_d0_nd1
    mask_c3 = ~mask_d2 * ~mask_d0_nd1
    mask_c0 = mask_c0.view(-1, 1).type_as(q0)
    mask_c1 = mask_c1.view(-1, 1).type_as(q1)
    mask_c2 = mask_c2.view(-1, 1).type_as(q2)
    mask_c3 = mask_c3.view(-1, 1).type_as(q3)

    q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
    q /= torch.sqrt(
        t0_rep * mask_c0
        + t1_rep * mask_c1
        + t2_rep * mask_c2  # noqa
        + t3_rep * mask_c3
    )  # noqa
    q *= 0.5
    return q.reshape(*dims, 4)