File size: 8,925 Bytes
c0a5eb4
 
 
cd14b20
 
 
c0a5eb4
 
 
72d303e
c0a5eb4
cd14b20
 
 
 
c0a5eb4
 
cd14b20
c0a5eb4
1e8e9e3
cd14b20
 
c0a5eb4
cd14b20
 
 
 
 
 
 
 
 
 
 
 
3924b43
cd14b20
 
 
 
c0a5eb4
3924b43
c0a5eb4
 
cd14b20
1e8e9e3
cd14b20
 
 
c0a5eb4
 
 
cd14b20
 
 
 
 
 
 
 
 
 
3924b43
cd14b20
 
3924b43
 
 
 
 
 
6dfaa45
3924b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd14b20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3924b43
cd14b20
 
 
 
 
 
 
3924b43
cd14b20
 
 
 
 
 
3924b43
cd14b20
3924b43
cd14b20
c0a5eb4
cd14b20
 
 
3924b43
cd14b20
3924b43
cd14b20
c0a5eb4
cd14b20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a5eb4
 
3924b43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import gradio as gr
import numpy as np
import random

import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    # Seed Handling
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # Generate Image
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
/* CSS Styling (remains unchanged from earlier examples) */
"""

# Higher Defaults for Advanced Settings
DEFAULT_STEPS = 50
DEFAULT_GUIDANCE = 7.5

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("<div id='header'><h1 id='title'>Veshon: Veshup's Image Generation AI</h1><p id='subtitle'>Create stunning images with just a prompt. Powered by cutting-edge AI technology.</p></div>")

        with gr.Row():
            prompt = gr.Text(
                label="Your Creative Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt here...",
                container=False,
            )

            run_button = gr.Button("Generate Image", scale=0, variant="primary", elem_classes="gradio-button")

        result = gr.Image(label="Generated Image", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative Prompt",
                max_lines=1,
                placeholder="Enter a negative prompt if needed",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,  # Higher default resolution
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,  # Higher default resolution
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0.0,
                    maximum=15.0,
                    step=0.1,
                    value=DEFAULT_GUIDANCE,  # Higher guidance by default
                )

                num_inference_steps = gr.Slider(
                    label="Number of Inference Steps",
                    minimum=1,
                    maximum=150,  # Increased maximum steps
                    step=1,
                    value=DEFAULT_STEPS,  # Higher inference steps for quality
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()
import gradio as gr
import numpy as np
import random

import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    # Seed Handling
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # Generate Image
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
/* CSS Styling (remains unchanged from earlier examples) */
"""

# Higher Defaults for Advanced Settings
DEFAULT_STEPS = 50
DEFAULT_GUIDANCE = 7.5

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("<div id='header'><h1 id='title'>Veginator: Veshup's Image Generation AI</h1><p id='subtitle'>Create stunning images with just a prompt. Powered by cutting-edge AI technology.</p></div>")

        with gr.Row():
            prompt = gr.Text(
                label="Your Creative Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt here...",
                container=False,
            )

            run_button = gr.Button("Generate Image", scale=0, variant="primary", elem_classes="gradio-button")

        result = gr.Image(label="Generated Image", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative Prompt",
                max_lines=1,
                placeholder="Enter a negative prompt if needed",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,  # Higher default resolution
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,  # Higher default resolution
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0.0,
                    maximum=15.0,
                    step=0.1,
                    value=DEFAULT_GUIDANCE,  # Higher guidance by default
                )

                num_inference_steps = gr.Slider(
                    label="Number of Inference Steps",
                    minimum=1,
                    maximum=150,  # Increased maximum steps
                    step=1,
                    value=DEFAULT_STEPS,  # Higher inference steps for quality
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()