TheVeshup commited on
Commit
1e8e9e3
·
verified ·
1 Parent(s): 66454e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -207
app.py CHANGED
@@ -1,230 +1,51 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0" # Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
 
17
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
 
 
 
23
 
24
- @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
 
39
- generator = torch.Generator().manual_seed(seed)
40
 
 
 
41
  image = pipe(
42
  prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
  num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
  generator=generator,
49
  ).images[0]
 
50
 
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- /* General Styles */
62
- #col-container {
63
- margin: 0 auto;
64
- max-width: 640px;
65
- font-family: 'Arial', sans-serif;
66
- color: #333;
67
- background-color: #f0f4f8; /* Light gray background for better contrast */
68
- border-radius: 15px;
69
- padding: 20px;
70
- }
71
-
72
- #header {
73
- text-align: center;
74
- color: #1f5f99; /* Veshup Blue */
75
- }
76
-
77
- #title {
78
- font-size: 36px;
79
- font-weight: bold;
80
- margin-bottom: 10px;
81
- }
82
-
83
- #subtitle {
84
- font-size: 18px;
85
- color: #555;
86
- margin-bottom: 30px;
87
- }
88
-
89
- .gradio-button {
90
- background-color: #1f5f99;
91
- color: white;
92
- font-weight: bold;
93
- border-radius: 8px;
94
- }
95
-
96
- .gradio-button:hover {
97
- background-color: #155b89;
98
- }
99
-
100
- .gradio-slider {
101
- width: 100%;
102
- }
103
-
104
- .gradio-checkbox label {
105
- font-weight: normal;
106
- }
107
-
108
- .gradio-markdown {
109
- font-size: 16px;
110
- line-height: 1.6;
111
- }
112
-
113
- /* Dark Mode adjustments for browser default theme */
114
- @media (prefers-color-scheme: dark) {
115
- #col-container {
116
- background-color: #2e2e2e; /* Dark background for dark mode */
117
- color: #e0e0e0; /* Light text for dark mode */
118
- }
119
-
120
- #header {
121
- color: #a5c4f6; /* Lighter blue for dark mode */
122
- }
123
-
124
- .gradio-button {
125
- background-color: #4f89b0;
126
- }
127
-
128
- .gradio-button:hover {
129
- background-color: #3a6a8b;
130
- }
131
-
132
- .gradio-slider,
133
- .gradio-checkbox {
134
- background-color: #444; /* Darker elements in dark mode */
135
- }
136
-
137
- .gradio-markdown {
138
- color: #d1d1d1; /* Lighter text for markdown */
139
- }
140
- }
141
- """
142
-
143
- with gr.Blocks(css=css) as demo:
144
- with gr.Column(elem_id="col-container"):
145
- gr.Markdown("<div id='header'><h1 id='title'>Veginator: Veshup's Image Generation AI</h1><p id='subtitle'>Create stunning images with just a prompt. Powered by cutting-edge AI technology.</p></div>")
146
-
147
- with gr.Row():
148
- prompt = gr.Text(
149
- label="Your Creative Prompt",
150
- show_label=False,
151
- max_lines=1,
152
- placeholder="Enter your prompt here...",
153
- container=False,
154
- )
155
-
156
- run_button = gr.Button("Generate Image", scale=0, variant="primary", elem_classes="gradio-button")
157
-
158
- result = gr.Image(label="Generated Image", show_label=False)
159
-
160
- with gr.Accordion("Advanced Settings", open=False):
161
- negative_prompt = gr.Text(
162
- label="Negative Prompt",
163
- max_lines=1,
164
- placeholder="Enter a negative prompt if needed",
165
- visible=False,
166
- )
167
-
168
- seed = gr.Slider(
169
- label="Seed",
170
- minimum=0,
171
- maximum=MAX_SEED,
172
- step=1,
173
- value=0,
174
- )
175
-
176
- randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
177
-
178
- with gr.Row():
179
- width = gr.Slider(
180
- label="Width",
181
- minimum=256,
182
- maximum=MAX_IMAGE_SIZE,
183
- step=32,
184
- value=1024, # Replace with defaults that work for your model
185
- )
186
-
187
- height = gr.Slider(
188
- label="Height",
189
- minimum=256,
190
- maximum=MAX_IMAGE_SIZE,
191
- step=32,
192
- value=1024, # Replace with defaults that work for your model
193
- )
194
-
195
- with gr.Row():
196
- guidance_scale = gr.Slider(
197
- label="Guidance Scale",
198
- minimum=0.0,
199
- maximum=10.0,
200
- step=0.1,
201
- value=0.0, # Replace with defaults that work for your model
202
- )
203
 
204
- num_inference_steps = gr.Slider(
205
- label="Number of Inference Steps",
206
- minimum=1,
207
- maximum=50,
208
- step=1,
209
- value=2, # Replace with defaults that work for your model
210
- )
 
 
 
 
 
 
211
 
212
- gr.Examples(examples=examples, inputs=[prompt])
213
- gr.on(
214
- triggers=[run_button.click, prompt.submit],
215
- fn=infer,
216
- inputs=[
217
- prompt,
218
- negative_prompt,
219
- seed,
220
- randomize_seed,
221
- width,
222
- height,
223
- guidance_scale,
224
- num_inference_steps,
225
- ],
226
- outputs=[result, seed],
227
- )
228
 
229
  if __name__ == "__main__":
230
- demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ from diffusers import DiffusionPipeline, EulerDiscreteScheduler
 
 
5
  import torch
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
9
 
10
+ # Define model and checkpoint
11
+ model_repo_id = "ByteDance/SDXL-Lightning"
12
+ ckpt = "sdxl_lightning_4step_unet.safetensors"
 
13
 
14
+ # Load the diffusion pipeline
15
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
16
+ pipe.to(device)
 
 
 
17
 
18
+ # Update the scheduler
19
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
20
 
21
+ MAX_SEED = np.iinfo(np.int32).max
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
 
23
 
24
+ def generate_and_display(prompt, num_inference_steps=10, guidance_scale=0):
25
+ generator = torch.Generator(device).manual_seed(random.randint(0, MAX_SEED))
26
  image = pipe(
27
  prompt=prompt,
 
 
28
  num_inference_steps=num_inference_steps,
29
+ guidance_scale=guidance_scale,
 
30
  generator=generator,
31
  ).images[0]
32
+ return image
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ @gr.Interface(
36
+ fn=generate_and_display,
37
+ inputs=[
38
+ gr.Textbox(label="Prompt", placeholder="Enter your creative prompt here"),
39
+ gr.Slider(1, 50, value=10, label="Number of Inference Steps"),
40
+ gr.Slider(0.0, 10.0, value=7.5, label="Guidance Scale"),
41
+ ],
42
+ outputs=gr.Image(label="Generated Image"),
43
+ title="Veshon: Your Creative AI Assistant",
44
+ description="Generate stunning visuals effortlessly with cutting-edge technology!",
45
+ )
46
+ def launch_demo():
47
+ gr.launch(server_name="0.0.0.0", server_port=8080) # Use a specified port for local testing
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  if __name__ == "__main__":
51
+ launch_demo()