|
|
|
import math
|
|
from typing import List, Tuple, Union
|
|
import torch
|
|
from fvcore.nn import giou_loss, smooth_l1_loss
|
|
from torch.nn import functional as F
|
|
|
|
from detectron2.layers import cat, ciou_loss, diou_loss
|
|
from detectron2.structures import Boxes
|
|
|
|
|
|
|
|
|
|
_DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16)
|
|
|
|
|
|
__all__ = ["Box2BoxTransform", "Box2BoxTransformRotated", "Box2BoxTransformLinear"]
|
|
|
|
|
|
@torch.jit.script
|
|
class Box2BoxTransform:
|
|
"""
|
|
The box-to-box transform defined in R-CNN. The transformation is parameterized
|
|
by 4 deltas: (dx, dy, dw, dh). The transformation scales the box's width and height
|
|
by exp(dw), exp(dh) and shifts a box's center by the offset (dx * width, dy * height).
|
|
"""
|
|
|
|
def __init__(
|
|
self, weights: Tuple[float, float, float, float], scale_clamp: float = _DEFAULT_SCALE_CLAMP
|
|
):
|
|
"""
|
|
Args:
|
|
weights (4-element tuple): Scaling factors that are applied to the
|
|
(dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set
|
|
such that the deltas have unit variance; now they are treated as
|
|
hyperparameters of the system.
|
|
scale_clamp (float): When predicting deltas, the predicted box scaling
|
|
factors (dw and dh) are clamped such that they are <= scale_clamp.
|
|
"""
|
|
self.weights = weights
|
|
self.scale_clamp = scale_clamp
|
|
|
|
def get_deltas(self, src_boxes, target_boxes):
|
|
"""
|
|
Get box regression transformation deltas (dx, dy, dw, dh) that can be used
|
|
to transform the `src_boxes` into the `target_boxes`. That is, the relation
|
|
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
|
|
any delta is too large and is clamped).
|
|
|
|
Args:
|
|
src_boxes (Tensor): source boxes, e.g., object proposals
|
|
target_boxes (Tensor): target of the transformation, e.g., ground-truth
|
|
boxes.
|
|
"""
|
|
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
|
|
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
|
|
|
|
src_widths = src_boxes[:, 2] - src_boxes[:, 0]
|
|
src_heights = src_boxes[:, 3] - src_boxes[:, 1]
|
|
src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths
|
|
src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights
|
|
|
|
target_widths = target_boxes[:, 2] - target_boxes[:, 0]
|
|
target_heights = target_boxes[:, 3] - target_boxes[:, 1]
|
|
target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths
|
|
target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights
|
|
|
|
wx, wy, ww, wh = self.weights
|
|
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
|
|
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
|
|
dw = ww * torch.log(target_widths / src_widths)
|
|
dh = wh * torch.log(target_heights / src_heights)
|
|
|
|
deltas = torch.stack((dx, dy, dw, dh), dim=1)
|
|
assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!"
|
|
return deltas
|
|
|
|
def apply_deltas(self, deltas, boxes):
|
|
"""
|
|
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
|
|
|
|
Args:
|
|
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
|
|
deltas[i] represents k potentially different class-specific
|
|
box transformations for the single box boxes[i].
|
|
boxes (Tensor): boxes to transform, of shape (N, 4)
|
|
"""
|
|
deltas = deltas.float()
|
|
boxes = boxes.to(deltas.dtype)
|
|
|
|
widths = boxes[:, 2] - boxes[:, 0]
|
|
heights = boxes[:, 3] - boxes[:, 1]
|
|
ctr_x = boxes[:, 0] + 0.5 * widths
|
|
ctr_y = boxes[:, 1] + 0.5 * heights
|
|
|
|
wx, wy, ww, wh = self.weights
|
|
dx = deltas[:, 0::4] / wx
|
|
dy = deltas[:, 1::4] / wy
|
|
dw = deltas[:, 2::4] / ww
|
|
dh = deltas[:, 3::4] / wh
|
|
|
|
|
|
dw = torch.clamp(dw, max=self.scale_clamp)
|
|
dh = torch.clamp(dh, max=self.scale_clamp)
|
|
|
|
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
|
|
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
|
|
pred_w = torch.exp(dw) * widths[:, None]
|
|
pred_h = torch.exp(dh) * heights[:, None]
|
|
|
|
x1 = pred_ctr_x - 0.5 * pred_w
|
|
y1 = pred_ctr_y - 0.5 * pred_h
|
|
x2 = pred_ctr_x + 0.5 * pred_w
|
|
y2 = pred_ctr_y + 0.5 * pred_h
|
|
pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1)
|
|
return pred_boxes.reshape(deltas.shape)
|
|
|
|
|
|
|
|
class Box2BoxTransformRotated:
|
|
"""
|
|
The box-to-box transform defined in Rotated R-CNN. The transformation is parameterized
|
|
by 5 deltas: (dx, dy, dw, dh, da). The transformation scales the box's width and height
|
|
by exp(dw), exp(dh), shifts a box's center by the offset (dx * width, dy * height),
|
|
and rotate a box's angle by da (radians).
|
|
Note: angles of deltas are in radians while angles of boxes are in degrees.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
weights: Tuple[float, float, float, float, float],
|
|
scale_clamp: float = _DEFAULT_SCALE_CLAMP,
|
|
):
|
|
"""
|
|
Args:
|
|
weights (5-element tuple): Scaling factors that are applied to the
|
|
(dx, dy, dw, dh, da) deltas. These are treated as
|
|
hyperparameters of the system.
|
|
scale_clamp (float): When predicting deltas, the predicted box scaling
|
|
factors (dw and dh) are clamped such that they are <= scale_clamp.
|
|
"""
|
|
self.weights = weights
|
|
self.scale_clamp = scale_clamp
|
|
|
|
def get_deltas(self, src_boxes, target_boxes):
|
|
"""
|
|
Get box regression transformation deltas (dx, dy, dw, dh, da) that can be used
|
|
to transform the `src_boxes` into the `target_boxes`. That is, the relation
|
|
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
|
|
any delta is too large and is clamped).
|
|
|
|
Args:
|
|
src_boxes (Tensor): Nx5 source boxes, e.g., object proposals
|
|
target_boxes (Tensor): Nx5 target of the transformation, e.g., ground-truth
|
|
boxes.
|
|
"""
|
|
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
|
|
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
|
|
|
|
src_ctr_x, src_ctr_y, src_widths, src_heights, src_angles = torch.unbind(src_boxes, dim=1)
|
|
|
|
target_ctr_x, target_ctr_y, target_widths, target_heights, target_angles = torch.unbind(
|
|
target_boxes, dim=1
|
|
)
|
|
|
|
wx, wy, ww, wh, wa = self.weights
|
|
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
|
|
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
|
|
dw = ww * torch.log(target_widths / src_widths)
|
|
dh = wh * torch.log(target_heights / src_heights)
|
|
|
|
|
|
da = target_angles - src_angles
|
|
da = (da + 180.0) % 360.0 - 180.0
|
|
da *= wa * math.pi / 180.0
|
|
|
|
deltas = torch.stack((dx, dy, dw, dh, da), dim=1)
|
|
assert (
|
|
(src_widths > 0).all().item()
|
|
), "Input boxes to Box2BoxTransformRotated are not valid!"
|
|
return deltas
|
|
|
|
def apply_deltas(self, deltas, boxes):
|
|
"""
|
|
Apply transformation `deltas` (dx, dy, dw, dh, da) to `boxes`.
|
|
|
|
Args:
|
|
deltas (Tensor): transformation deltas of shape (N, k*5).
|
|
deltas[i] represents box transformation for the single box boxes[i].
|
|
boxes (Tensor): boxes to transform, of shape (N, 5)
|
|
"""
|
|
assert deltas.shape[1] % 5 == 0 and boxes.shape[1] == 5
|
|
|
|
boxes = boxes.to(deltas.dtype).unsqueeze(2)
|
|
|
|
ctr_x = boxes[:, 0]
|
|
ctr_y = boxes[:, 1]
|
|
widths = boxes[:, 2]
|
|
heights = boxes[:, 3]
|
|
angles = boxes[:, 4]
|
|
|
|
wx, wy, ww, wh, wa = self.weights
|
|
|
|
dx = deltas[:, 0::5] / wx
|
|
dy = deltas[:, 1::5] / wy
|
|
dw = deltas[:, 2::5] / ww
|
|
dh = deltas[:, 3::5] / wh
|
|
da = deltas[:, 4::5] / wa
|
|
|
|
|
|
dw = torch.clamp(dw, max=self.scale_clamp)
|
|
dh = torch.clamp(dh, max=self.scale_clamp)
|
|
|
|
pred_boxes = torch.zeros_like(deltas)
|
|
pred_boxes[:, 0::5] = dx * widths + ctr_x
|
|
pred_boxes[:, 1::5] = dy * heights + ctr_y
|
|
pred_boxes[:, 2::5] = torch.exp(dw) * widths
|
|
pred_boxes[:, 3::5] = torch.exp(dh) * heights
|
|
|
|
|
|
|
|
pred_angle = da * 180.0 / math.pi + angles
|
|
pred_angle = (pred_angle + 180.0) % 360.0 - 180.0
|
|
|
|
pred_boxes[:, 4::5] = pred_angle
|
|
|
|
return pred_boxes
|
|
|
|
|
|
class Box2BoxTransformLinear:
|
|
"""
|
|
The linear box-to-box transform defined in FCOS. The transformation is parameterized
|
|
by the distance from the center of (square) src box to 4 edges of the target box.
|
|
"""
|
|
|
|
def __init__(self, normalize_by_size=True):
|
|
"""
|
|
Args:
|
|
normalize_by_size: normalize deltas by the size of src (anchor) boxes.
|
|
"""
|
|
self.normalize_by_size = normalize_by_size
|
|
|
|
def get_deltas(self, src_boxes, target_boxes):
|
|
"""
|
|
Get box regression transformation deltas (dx1, dy1, dx2, dy2) that can be used
|
|
to transform the `src_boxes` into the `target_boxes`. That is, the relation
|
|
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true.
|
|
The center of src must be inside target boxes.
|
|
|
|
Args:
|
|
src_boxes (Tensor): square source boxes, e.g., anchors
|
|
target_boxes (Tensor): target of the transformation, e.g., ground-truth
|
|
boxes.
|
|
"""
|
|
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
|
|
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
|
|
|
|
src_ctr_x = 0.5 * (src_boxes[:, 0] + src_boxes[:, 2])
|
|
src_ctr_y = 0.5 * (src_boxes[:, 1] + src_boxes[:, 3])
|
|
|
|
target_l = src_ctr_x - target_boxes[:, 0]
|
|
target_t = src_ctr_y - target_boxes[:, 1]
|
|
target_r = target_boxes[:, 2] - src_ctr_x
|
|
target_b = target_boxes[:, 3] - src_ctr_y
|
|
|
|
deltas = torch.stack((target_l, target_t, target_r, target_b), dim=1)
|
|
if self.normalize_by_size:
|
|
stride_w = src_boxes[:, 2] - src_boxes[:, 0]
|
|
stride_h = src_boxes[:, 3] - src_boxes[:, 1]
|
|
strides = torch.stack([stride_w, stride_h, stride_w, stride_h], axis=1)
|
|
deltas = deltas / strides
|
|
|
|
return deltas
|
|
|
|
def apply_deltas(self, deltas, boxes):
|
|
"""
|
|
Apply transformation `deltas` (dx1, dy1, dx2, dy2) to `boxes`.
|
|
|
|
Args:
|
|
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
|
|
deltas[i] represents k potentially different class-specific
|
|
box transformations for the single box boxes[i].
|
|
boxes (Tensor): boxes to transform, of shape (N, 4)
|
|
"""
|
|
|
|
deltas = F.relu(deltas)
|
|
boxes = boxes.to(deltas.dtype)
|
|
|
|
ctr_x = 0.5 * (boxes[:, 0] + boxes[:, 2])
|
|
ctr_y = 0.5 * (boxes[:, 1] + boxes[:, 3])
|
|
if self.normalize_by_size:
|
|
stride_w = boxes[:, 2] - boxes[:, 0]
|
|
stride_h = boxes[:, 3] - boxes[:, 1]
|
|
strides = torch.stack([stride_w, stride_h, stride_w, stride_h], axis=1)
|
|
deltas = deltas * strides
|
|
|
|
l = deltas[:, 0::4]
|
|
t = deltas[:, 1::4]
|
|
r = deltas[:, 2::4]
|
|
b = deltas[:, 3::4]
|
|
|
|
pred_boxes = torch.zeros_like(deltas)
|
|
pred_boxes[:, 0::4] = ctr_x[:, None] - l
|
|
pred_boxes[:, 1::4] = ctr_y[:, None] - t
|
|
pred_boxes[:, 2::4] = ctr_x[:, None] + r
|
|
pred_boxes[:, 3::4] = ctr_y[:, None] + b
|
|
return pred_boxes
|
|
|
|
|
|
def _dense_box_regression_loss(
|
|
anchors: List[Union[Boxes, torch.Tensor]],
|
|
box2box_transform: Box2BoxTransform,
|
|
pred_anchor_deltas: List[torch.Tensor],
|
|
gt_boxes: List[torch.Tensor],
|
|
fg_mask: torch.Tensor,
|
|
box_reg_loss_type="smooth_l1",
|
|
smooth_l1_beta=0.0,
|
|
):
|
|
"""
|
|
Compute loss for dense multi-level box regression.
|
|
Loss is accumulated over ``fg_mask``.
|
|
|
|
Args:
|
|
anchors: #lvl anchor boxes, each is (HixWixA, 4)
|
|
pred_anchor_deltas: #lvl predictions, each is (N, HixWixA, 4)
|
|
gt_boxes: N ground truth boxes, each has shape (R, 4) (R = sum(Hi * Wi * A))
|
|
fg_mask: the foreground boolean mask of shape (N, R) to compute loss on
|
|
box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou",
|
|
"diou", "ciou".
|
|
smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to
|
|
use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1"
|
|
"""
|
|
if isinstance(anchors[0], Boxes):
|
|
anchors = type(anchors[0]).cat(anchors).tensor
|
|
else:
|
|
anchors = cat(anchors)
|
|
if box_reg_loss_type == "smooth_l1":
|
|
gt_anchor_deltas = [box2box_transform.get_deltas(anchors, k) for k in gt_boxes]
|
|
gt_anchor_deltas = torch.stack(gt_anchor_deltas)
|
|
loss_box_reg = smooth_l1_loss(
|
|
cat(pred_anchor_deltas, dim=1)[fg_mask],
|
|
gt_anchor_deltas[fg_mask],
|
|
beta=smooth_l1_beta,
|
|
reduction="sum",
|
|
)
|
|
elif box_reg_loss_type == "giou":
|
|
pred_boxes = [
|
|
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
|
|
]
|
|
loss_box_reg = giou_loss(
|
|
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
|
|
)
|
|
elif box_reg_loss_type == "diou":
|
|
pred_boxes = [
|
|
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
|
|
]
|
|
loss_box_reg = diou_loss(
|
|
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
|
|
)
|
|
elif box_reg_loss_type == "ciou":
|
|
pred_boxes = [
|
|
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
|
|
]
|
|
loss_box_reg = ciou_loss(
|
|
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
|
|
)
|
|
else:
|
|
raise ValueError(f"Invalid dense box regression loss type '{box_reg_loss_type}'")
|
|
return loss_box_reg
|
|
|