TheVeshup commited on
Commit
f665644
·
verified ·
1 Parent(s): ac86df8

Upload 947 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +35 -35
  2. .gitignore +1 -0
  3. README.md +12 -13
  4. amazon_oxy.py +39 -0
  5. app.py +353 -154
  6. apply_net.py +359 -0
  7. ckpt/densepose/.DS_Store +0 -0
  8. ckpt/densepose/model_final_162be9.pkl +3 -0
  9. ckpt/humanparsing/parsing_atr.onnx +3 -0
  10. ckpt/humanparsing/parsing_lip.onnx +3 -0
  11. ckpt/openpose/.DS_Store +0 -0
  12. ckpt/openpose/ckpts/body_pose_model.pth +3 -0
  13. configs/Base-DensePose-RCNN-FPN.yaml +48 -0
  14. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml +16 -0
  15. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml +23 -0
  16. configs/HRNet/densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml +23 -0
  17. configs/cse/Base-DensePose-RCNN-FPN-Human.yaml +20 -0
  18. configs/cse/Base-DensePose-RCNN-FPN.yaml +60 -0
  19. configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml +12 -0
  20. configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml +12 -0
  21. configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml +12 -0
  22. configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml +12 -0
  23. configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml +12 -0
  24. configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml +12 -0
  25. configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml +12 -0
  26. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml +133 -0
  27. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml +133 -0
  28. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml +119 -0
  29. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k.yaml +121 -0
  30. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k.yaml +138 -0
  31. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_16k.yaml +119 -0
  32. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_4k.yaml +119 -0
  33. configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k.yaml +118 -0
  34. configs/cse/densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k.yaml +29 -0
  35. configs/cse/densepose_rcnn_R_50_FPN_soft_s1x.yaml +12 -0
  36. configs/densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml +18 -0
  37. configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml +16 -0
  38. configs/densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml +18 -0
  39. configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml +16 -0
  40. configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml +10 -0
  41. configs/densepose_rcnn_R_101_FPN_WC1M_s1x.yaml +18 -0
  42. configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml +16 -0
  43. configs/densepose_rcnn_R_101_FPN_WC2M_s1x.yaml +18 -0
  44. configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml +16 -0
  45. configs/densepose_rcnn_R_101_FPN_s1x.yaml +8 -0
  46. configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml +17 -0
  47. configs/densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml +18 -0
  48. configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml +16 -0
  49. configs/densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml +18 -0
  50. configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml +16 -0
.gitattributes CHANGED
@@ -1,35 +1,35 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ *.pyc
README.md CHANGED
@@ -1,13 +1,12 @@
1
- ---
2
- title: Veshup.AI
3
- emoji: 🖼
4
- colorFrom: purple
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.0.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ title: Virtual Tryon Demo
3
+ emoji: 🔥
4
+ colorFrom: green
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 4.41.0
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
amazon_oxy.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import json
3
+ import os
4
+
5
+ username = os.environ.get('USERNAME')
6
+ passwd = os.environ.get('PASSWORD')
7
+ def scrape_amazon(search_query, n =20):
8
+ # Structure payload.
9
+ payload = {
10
+ 'source': 'amazon_search',
11
+ 'domain': 'com',
12
+ 'query': f'{search_query}',
13
+ 'start_page': 1,
14
+ 'pages': 1,
15
+ 'parse': True,
16
+ # 'context': [
17
+ # {'key': 'category_id', 'value': 16391693031}
18
+ # ],
19
+ }
20
+
21
+ # Get response.
22
+ response = requests.request(
23
+ 'POST',
24
+ 'https://realtime.oxylabs.io/v1/queries',
25
+ auth=(username, passwd),
26
+ json=payload,
27
+ )
28
+ result = json.loads(response.content)
29
+ final_result = {}
30
+ i=0
31
+ # Parse result.
32
+ for item in result['results'][0]['content']['results']['organic']:
33
+ if i<n:
34
+ final_result[item['url_image']]= (item['price'],"amazon.com"+item['url'])
35
+ i+=1
36
+ else:
37
+ break
38
+
39
+ return final_result
app.py CHANGED
@@ -1,154 +1,353 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
-
153
- if __name__ == "__main__":
154
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio.themes.base import Base
3
+ import spaces
4
+ from PIL import Image
5
+ from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
6
+ from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
7
+ from src.unet_hacked_tryon import UNet2DConditionModel
8
+ from transformers import (
9
+ CLIPImageProcessor,
10
+ CLIPVisionModelWithProjection,
11
+ CLIPTextModel,
12
+ CLIPTextModelWithProjection,
13
+ )
14
+ from diffusers import DDPMScheduler,AutoencoderKL
15
+ from typing import List
16
+ import ast
17
+ import webbrowser
18
+
19
+ import torch
20
+ import os
21
+ from transformers import AutoTokenizer
22
+ import numpy as np
23
+ from utils_mask import get_mask_location
24
+ from torchvision import transforms
25
+ import apply_net
26
+ from preprocess.humanparsing.run_parsing import Parsing
27
+ from preprocess.openpose.run_openpose import OpenPose
28
+ from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
29
+ from torchvision.transforms.functional import to_pil_image
30
+ import amazon_oxy
31
+
32
+
33
+ class Seafoam(Base):
34
+ pass
35
+
36
+ def pil_to_binary_mask(pil_image, threshold=0):
37
+ np_image = np.array(pil_image)
38
+ grayscale_image = Image.fromarray(np_image).convert("L")
39
+ binary_mask = np.array(grayscale_image) > threshold
40
+ mask = np.zeros(binary_mask.shape, dtype=np.uint8)
41
+ for i in range(binary_mask.shape[0]):
42
+ for j in range(binary_mask.shape[1]):
43
+ if binary_mask[i,j] == True :
44
+ mask[i,j] = 1
45
+ mask = (mask*255).astype(np.uint8)
46
+ output_mask = Image.fromarray(mask)
47
+ return output_mask
48
+
49
+ def fetch_products(query):
50
+ result= amazon_oxy.scrape_amazon(query)
51
+ values = list(result.values())
52
+ imgs=list(result.keys())
53
+ pic_and_prices = []
54
+ urls = []
55
+ i = 0
56
+ for price, url in values:
57
+ pic_and_prices.append((imgs[i], "$"+str(price)))
58
+ i+=1
59
+ urls.append(url)
60
+ return [pic_and_prices, urls]
61
+
62
+ base_path = 'yisol/IDM-VTON'
63
+ example_path = os.path.join(os.path.dirname(__file__), 'example')
64
+
65
+ unet = UNet2DConditionModel.from_pretrained(
66
+ base_path,
67
+ subfolder="unet",
68
+ torch_dtype=torch.float16,
69
+ )
70
+ unet.requires_grad_(False)
71
+ tokenizer_one = AutoTokenizer.from_pretrained(
72
+ base_path,
73
+ subfolder="tokenizer",
74
+ revision=None,
75
+ use_fast=False,
76
+ )
77
+ tokenizer_two = AutoTokenizer.from_pretrained(
78
+ base_path,
79
+ subfolder="tokenizer_2",
80
+ revision=None,
81
+ use_fast=False,
82
+ )
83
+ noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
84
+
85
+ text_encoder_one = CLIPTextModel.from_pretrained(
86
+ base_path,
87
+ subfolder="text_encoder",
88
+ torch_dtype=torch.float16,
89
+ )
90
+ text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
91
+ base_path,
92
+ subfolder="text_encoder_2",
93
+ torch_dtype=torch.float16,
94
+ )
95
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
96
+ base_path,
97
+ subfolder="image_encoder",
98
+ torch_dtype=torch.float16,
99
+ )
100
+ vae = AutoencoderKL.from_pretrained(base_path,
101
+ subfolder="vae",
102
+ torch_dtype=torch.float16,
103
+ )
104
+
105
+ # "stabilityai/stable-diffusion-xl-base-1.0",
106
+ UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
107
+ base_path,
108
+ subfolder="unet_encoder",
109
+ torch_dtype=torch.float16,
110
+ )
111
+
112
+ parsing_model = Parsing(0)
113
+ openpose_model = OpenPose(0)
114
+
115
+ UNet_Encoder.requires_grad_(False)
116
+ image_encoder.requires_grad_(False)
117
+ vae.requires_grad_(False)
118
+ unet.requires_grad_(False)
119
+ text_encoder_one.requires_grad_(False)
120
+ text_encoder_two.requires_grad_(False)
121
+ tensor_transfrom = transforms.Compose(
122
+ [
123
+ transforms.ToTensor(),
124
+ transforms.Normalize([0.5], [0.5]),
125
+ ]
126
+ )
127
+
128
+ pipe = TryonPipeline.from_pretrained(
129
+ base_path,
130
+ unet=unet,
131
+ vae=vae,
132
+ feature_extractor= CLIPImageProcessor(),
133
+ text_encoder = text_encoder_one,
134
+ text_encoder_2 = text_encoder_two,
135
+ tokenizer = tokenizer_one,
136
+ tokenizer_2 = tokenizer_two,
137
+ scheduler = noise_scheduler,
138
+ image_encoder=image_encoder,
139
+ torch_dtype=torch.float16,
140
+ )
141
+ pipe.unet_encoder = UNet_Encoder
142
+
143
+ @spaces.GPU
144
+ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
145
+ device = "cuda"
146
+
147
+ openpose_model.preprocessor.body_estimation.model.to(device)
148
+ pipe.to(device)
149
+ pipe.unet_encoder.to(device)
150
+
151
+ garm_img= garm_img.convert("RGB").resize((768,1024))
152
+ human_img_orig = dict["background"].convert("RGB")
153
+
154
+ if is_checked_crop:
155
+ width, height = human_img_orig.size
156
+ target_width = int(min(width, height * (3 / 4)))
157
+ target_height = int(min(height, width * (4 / 3)))
158
+ left = (width - target_width) / 2
159
+ top = (height - target_height) / 2
160
+ right = (width + target_width) / 2
161
+ bottom = (height + target_height) / 2
162
+ cropped_img = human_img_orig.crop((left, top, right, bottom))
163
+ crop_size = cropped_img.size
164
+ human_img = cropped_img.resize((768,1024))
165
+ else:
166
+ human_img = human_img_orig.resize((768,1024))
167
+
168
+
169
+ if is_checked:
170
+ keypoints = openpose_model(human_img.resize((384,512)))
171
+ model_parse, _ = parsing_model(human_img.resize((384,512)))
172
+ mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
173
+ mask = mask.resize((768,1024))
174
+ else:
175
+ mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
176
+ # mask = transforms.ToTensor()(mask)
177
+ # mask = mask.unsqueeze(0)
178
+ mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
179
+ mask_gray = to_pil_image((mask_gray+1.0)/2.0)
180
+
181
+
182
+ human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
183
+ human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
184
+
185
+
186
+
187
+ args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
188
+ # verbosity = getattr(args, "verbosity", None)
189
+ pose_img = args.func(args,human_img_arg)
190
+ pose_img = pose_img[:,:,::-1]
191
+ pose_img = Image.fromarray(pose_img).resize((768,1024))
192
+
193
+ with torch.no_grad():
194
+ # Extract the images
195
+ with torch.cuda.amp.autocast():
196
+ with torch.no_grad():
197
+ prompt = "model is wearing " + garment_des
198
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
199
+ with torch.inference_mode():
200
+ (
201
+ prompt_embeds,
202
+ negative_prompt_embeds,
203
+ pooled_prompt_embeds,
204
+ negative_pooled_prompt_embeds,
205
+ ) = pipe.encode_prompt(
206
+ prompt,
207
+ num_images_per_prompt=1,
208
+ do_classifier_free_guidance=True,
209
+ negative_prompt=negative_prompt,
210
+ )
211
+
212
+ prompt = "a photo of " + garment_des
213
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
214
+ if not isinstance(prompt, List):
215
+ prompt = [prompt] * 1
216
+ if not isinstance(negative_prompt, List):
217
+ negative_prompt = [negative_prompt] * 1
218
+ with torch.inference_mode():
219
+ (
220
+ prompt_embeds_c,
221
+ _,
222
+ _,
223
+ _,
224
+ ) = pipe.encode_prompt(
225
+ prompt,
226
+ num_images_per_prompt=1,
227
+ do_classifier_free_guidance=False,
228
+ negative_prompt=negative_prompt,
229
+ )
230
+
231
+
232
+
233
+ pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
234
+ garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
235
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
236
+ images = pipe(
237
+ prompt_embeds=prompt_embeds.to(device,torch.float16),
238
+ negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
239
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
240
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
241
+ num_inference_steps=denoise_steps,
242
+ generator=generator,
243
+ strength = 1.0,
244
+ pose_img = pose_img.to(device,torch.float16),
245
+ text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
246
+ cloth = garm_tensor.to(device,torch.float16),
247
+ mask_image=mask,
248
+ image=human_img,
249
+ height=1024,
250
+ width=768,
251
+ ip_adapter_image = garm_img.resize((768,1024)),
252
+ guidance_scale=2.0,
253
+ )[0]
254
+
255
+ if is_checked_crop:
256
+ out_img = images[0].resize(crop_size)
257
+ human_img_orig.paste(out_img, (int(left), int(top)))
258
+ return human_img_orig
259
+ else:
260
+ return images[0]
261
+ # return images[0], mask_gray
262
+ # Function to handle image selection from the gallery
263
+ def select_image(images, urls, evt: gr.SelectData):
264
+ urls = ast.literal_eval(urls)
265
+ return images[evt.index][0], urls[evt.index]
266
+
267
+ garm_list = os.listdir(os.path.join(example_path,"cloth"))
268
+ garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
269
+
270
+ human_list = os.listdir(os.path.join(example_path,"human"))
271
+ human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
272
+
273
+ human_ex_list = []
274
+ for ex_human in human_list_path:
275
+ ex_dict= {}
276
+ ex_dict['background'] = ex_human
277
+ ex_dict['layers'] = None
278
+ ex_dict['composite'] = None
279
+ human_ex_list.append(ex_dict)
280
+
281
+ def open_link(link):
282
+ print(f"link is {link}")
283
+ return link
284
+ ##default human
285
+ seafoam = Seafoam()
286
+ # Include the CSS file content in your Gradio interface
287
+ custom_css = """
288
+ body, .gradio-container {
289
+ background-color: #0b0f19;
290
+ color: black; /* Black text */
291
+ }
292
+
293
+ .gr-block {
294
+ background-color: #00a49c; /* Light green background */
295
+ color: black; /* Black text */
296
+ padding: 10px; /* Optional: Add some padding for spacing */
297
+ border-radius: 5px; /* Optional: Rounded corners for blocks */
298
+ }
299
+
300
+ """
301
+ image_blocks = gr.Blocks(css=custom_css).queue()
302
+ with image_blocks as demo:
303
+ gr.HTML("<center><h1>Veshup 👚👖</h1></center>")
304
+ gr.HTML("<center><p>Upload an image of yourself or select from examples then describe your garment in the text box and wait for the magic. ✨</p></center>")
305
+
306
+ with gr.Row():
307
+ with gr.Column():
308
+ imgs = gr.ImageEditor(sources='upload', type="pil", label='Image', interactive=True)
309
+ with gr.Row():
310
+ is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask",value=True)
311
+ with gr.Row():
312
+ is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
313
+
314
+ example = gr.Examples(
315
+ inputs=imgs,
316
+ examples_per_page=10,
317
+ examples=human_ex_list
318
+ )
319
+ with gr.Accordion(label="Advanced Settings", open=False):
320
+ with gr.Row():
321
+ denoise_steps = gr.Number(label="Denoising Steps", minimum=5, maximum=40, value=10, step=1)
322
+ seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
323
+
324
+ with gr.Column():
325
+ prompt = gr.Textbox(placeholder="Description of garment ex: Yellow Top", show_label=False, elem_id="prompt")
326
+ fetch_button = gr.Button("Find Products")
327
+
328
+ image_gallery = gr.Gallery(label="Available Products", show_label=True, elem_id="gallery"
329
+ , columns=[3], rows=[1], object_fit="contain", height="auto", allow_preview= False)
330
+ url_display = gr.Textbox(label="URLs of Images", interactive=False, visible=False)
331
+ with gr.Column():
332
+ garm_img = gr.Image(label="Garment", sources='upload', type="pil")
333
+ try_button = gr.Button(value="Try-on")
334
+ #masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False, visi)
335
+ image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
336
+ buy_link = gr.Textbox(label="URL of Selected Image", interactive=False, visible= False)
337
+ buy_button = gr.Button(value="Like it? Click to buy")
338
+ output = gr.HTML()
339
+
340
+ fetch_button.click(fn=fetch_products, inputs=prompt, outputs=[image_gallery, url_display])
341
+ image_gallery.select(select_image, [image_gallery, url_display], [garm_img, buy_link])
342
+ #try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
343
+ #buy_button.click(fn=None,inputs=buy_link,js=f"(buy_link) => {{ window.open(buy_link.substring(buy_link.indexOf('amazon.com')), '_blank');console.log(buy_link) }}")
344
+ try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out], api_name='tryon')
345
+
346
+ buy_button.click(fn=None,inputs=buy_link, js=f'''(buy_link) => {{
347
+ const clean_link = buy_link.includes('http') ? buy_link : 'https://' + buy_link;
348
+ window.open(clean_link, '_blank');
349
+ console.log(clean_link);
350
+ }}'''
351
+ )
352
+
353
+ image_blocks.launch()
apply_net.py ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # Copyright (c) Facebook, Inc. and its affiliates.
3
+
4
+ import argparse
5
+ import glob
6
+ import logging
7
+ import os
8
+ import sys
9
+ from typing import Any, ClassVar, Dict, List
10
+ import torch
11
+
12
+ from detectron2.config import CfgNode, get_cfg
13
+ from detectron2.data.detection_utils import read_image
14
+ from detectron2.engine.defaults import DefaultPredictor
15
+ from detectron2.structures.instances import Instances
16
+ from detectron2.utils.logger import setup_logger
17
+
18
+ from densepose import add_densepose_config
19
+ from densepose.structures import DensePoseChartPredictorOutput, DensePoseEmbeddingPredictorOutput
20
+ from densepose.utils.logger import verbosity_to_level
21
+ from densepose.vis.base import CompoundVisualizer
22
+ from densepose.vis.bounding_box import ScoredBoundingBoxVisualizer
23
+ from densepose.vis.densepose_outputs_vertex import (
24
+ DensePoseOutputsTextureVisualizer,
25
+ DensePoseOutputsVertexVisualizer,
26
+ get_texture_atlases,
27
+ )
28
+ from densepose.vis.densepose_results import (
29
+ DensePoseResultsContourVisualizer,
30
+ DensePoseResultsFineSegmentationVisualizer,
31
+ DensePoseResultsUVisualizer,
32
+ DensePoseResultsVVisualizer,
33
+ )
34
+ from densepose.vis.densepose_results_textures import (
35
+ DensePoseResultsVisualizerWithTexture,
36
+ get_texture_atlas,
37
+ )
38
+ from densepose.vis.extractor import (
39
+ CompoundExtractor,
40
+ DensePoseOutputsExtractor,
41
+ DensePoseResultExtractor,
42
+ create_extractor,
43
+ )
44
+
45
+ DOC = """Apply Net - a tool to print / visualize DensePose results
46
+ """
47
+
48
+ LOGGER_NAME = "apply_net"
49
+ logger = logging.getLogger(LOGGER_NAME)
50
+
51
+ _ACTION_REGISTRY: Dict[str, "Action"] = {}
52
+
53
+
54
+ class Action:
55
+ @classmethod
56
+ def add_arguments(cls: type, parser: argparse.ArgumentParser):
57
+ parser.add_argument(
58
+ "-v",
59
+ "--verbosity",
60
+ action="count",
61
+ help="Verbose mode. Multiple -v options increase the verbosity.",
62
+ )
63
+
64
+
65
+ def register_action(cls: type):
66
+ """
67
+ Decorator for action classes to automate action registration
68
+ """
69
+ global _ACTION_REGISTRY
70
+ _ACTION_REGISTRY[cls.COMMAND] = cls
71
+ return cls
72
+
73
+
74
+ class InferenceAction(Action):
75
+ @classmethod
76
+ def add_arguments(cls: type, parser: argparse.ArgumentParser):
77
+ super(InferenceAction, cls).add_arguments(parser)
78
+ parser.add_argument("cfg", metavar="<config>", help="Config file")
79
+ parser.add_argument("model", metavar="<model>", help="Model file")
80
+ parser.add_argument(
81
+ "--opts",
82
+ help="Modify config options using the command-line 'KEY VALUE' pairs",
83
+ default=[],
84
+ nargs=argparse.REMAINDER,
85
+ )
86
+
87
+ @classmethod
88
+ def execute(cls: type, args: argparse.Namespace, human_img):
89
+ logger.info(f"Loading config from {args.cfg}")
90
+ opts = []
91
+ cfg = cls.setup_config(args.cfg, args.model, args, opts)
92
+ logger.info(f"Loading model from {args.model}")
93
+ predictor = DefaultPredictor(cfg)
94
+ # logger.info(f"Loading data from {args.input}")
95
+ # file_list = cls._get_input_file_list(args.input)
96
+ # if len(file_list) == 0:
97
+ # logger.warning(f"No input images for {args.input}")
98
+ # return
99
+ context = cls.create_context(args, cfg)
100
+ # for file_name in file_list:
101
+ # img = read_image(file_name, format="BGR") # predictor expects BGR image.
102
+ with torch.no_grad():
103
+ outputs = predictor(human_img)["instances"]
104
+ out_pose = cls.execute_on_outputs(context, {"image": human_img}, outputs)
105
+ cls.postexecute(context)
106
+ return out_pose
107
+
108
+ @classmethod
109
+ def setup_config(
110
+ cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str]
111
+ ):
112
+ cfg = get_cfg()
113
+ add_densepose_config(cfg)
114
+ cfg.merge_from_file(config_fpath)
115
+ cfg.merge_from_list(args.opts)
116
+ if opts:
117
+ cfg.merge_from_list(opts)
118
+ cfg.MODEL.WEIGHTS = model_fpath
119
+ cfg.freeze()
120
+ return cfg
121
+
122
+ @classmethod
123
+ def _get_input_file_list(cls: type, input_spec: str):
124
+ if os.path.isdir(input_spec):
125
+ file_list = [
126
+ os.path.join(input_spec, fname)
127
+ for fname in os.listdir(input_spec)
128
+ if os.path.isfile(os.path.join(input_spec, fname))
129
+ ]
130
+ elif os.path.isfile(input_spec):
131
+ file_list = [input_spec]
132
+ else:
133
+ file_list = glob.glob(input_spec)
134
+ return file_list
135
+
136
+
137
+ @register_action
138
+ class DumpAction(InferenceAction):
139
+ """
140
+ Dump action that outputs results to a pickle file
141
+ """
142
+
143
+ COMMAND: ClassVar[str] = "dump"
144
+
145
+ @classmethod
146
+ def add_parser(cls: type, subparsers: argparse._SubParsersAction):
147
+ parser = subparsers.add_parser(cls.COMMAND, help="Dump model outputs to a file.")
148
+ cls.add_arguments(parser)
149
+ parser.set_defaults(func=cls.execute)
150
+
151
+ @classmethod
152
+ def add_arguments(cls: type, parser: argparse.ArgumentParser):
153
+ super(DumpAction, cls).add_arguments(parser)
154
+ parser.add_argument(
155
+ "--output",
156
+ metavar="<dump_file>",
157
+ default="results.pkl",
158
+ help="File name to save dump to",
159
+ )
160
+
161
+ @classmethod
162
+ def execute_on_outputs(
163
+ cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
164
+ ):
165
+ image_fpath = entry["file_name"]
166
+ logger.info(f"Processing {image_fpath}")
167
+ result = {"file_name": image_fpath}
168
+ if outputs.has("scores"):
169
+ result["scores"] = outputs.get("scores").cpu()
170
+ if outputs.has("pred_boxes"):
171
+ result["pred_boxes_XYXY"] = outputs.get("pred_boxes").tensor.cpu()
172
+ if outputs.has("pred_densepose"):
173
+ if isinstance(outputs.pred_densepose, DensePoseChartPredictorOutput):
174
+ extractor = DensePoseResultExtractor()
175
+ elif isinstance(outputs.pred_densepose, DensePoseEmbeddingPredictorOutput):
176
+ extractor = DensePoseOutputsExtractor()
177
+ result["pred_densepose"] = extractor(outputs)[0]
178
+ context["results"].append(result)
179
+
180
+ @classmethod
181
+ def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode):
182
+ context = {"results": [], "out_fname": args.output}
183
+ return context
184
+
185
+ @classmethod
186
+ def postexecute(cls: type, context: Dict[str, Any]):
187
+ out_fname = context["out_fname"]
188
+ out_dir = os.path.dirname(out_fname)
189
+ if len(out_dir) > 0 and not os.path.exists(out_dir):
190
+ os.makedirs(out_dir)
191
+ with open(out_fname, "wb") as hFile:
192
+ torch.save(context["results"], hFile)
193
+ logger.info(f"Output saved to {out_fname}")
194
+
195
+
196
+ @register_action
197
+ class ShowAction(InferenceAction):
198
+ """
199
+ Show action that visualizes selected entries on an image
200
+ """
201
+
202
+ COMMAND: ClassVar[str] = "show"
203
+ VISUALIZERS: ClassVar[Dict[str, object]] = {
204
+ "dp_contour": DensePoseResultsContourVisualizer,
205
+ "dp_segm": DensePoseResultsFineSegmentationVisualizer,
206
+ "dp_u": DensePoseResultsUVisualizer,
207
+ "dp_v": DensePoseResultsVVisualizer,
208
+ "dp_iuv_texture": DensePoseResultsVisualizerWithTexture,
209
+ "dp_cse_texture": DensePoseOutputsTextureVisualizer,
210
+ "dp_vertex": DensePoseOutputsVertexVisualizer,
211
+ "bbox": ScoredBoundingBoxVisualizer,
212
+ }
213
+
214
+ @classmethod
215
+ def add_parser(cls: type, subparsers: argparse._SubParsersAction):
216
+ parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries")
217
+ cls.add_arguments(parser)
218
+ parser.set_defaults(func=cls.execute)
219
+
220
+ @classmethod
221
+ def add_arguments(cls: type, parser: argparse.ArgumentParser):
222
+ super(ShowAction, cls).add_arguments(parser)
223
+ parser.add_argument(
224
+ "visualizations",
225
+ metavar="<visualizations>",
226
+ help="Comma separated list of visualizations, possible values: "
227
+ "[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))),
228
+ )
229
+ parser.add_argument(
230
+ "--min_score",
231
+ metavar="<score>",
232
+ default=0.8,
233
+ type=float,
234
+ help="Minimum detection score to visualize",
235
+ )
236
+ parser.add_argument(
237
+ "--nms_thresh", metavar="<threshold>", default=None, type=float, help="NMS threshold"
238
+ )
239
+ parser.add_argument(
240
+ "--texture_atlas",
241
+ metavar="<texture_atlas>",
242
+ default=None,
243
+ help="Texture atlas file (for IUV texture transfer)",
244
+ )
245
+ parser.add_argument(
246
+ "--texture_atlases_map",
247
+ metavar="<texture_atlases_map>",
248
+ default=None,
249
+ help="JSON string of a dict containing texture atlas files for each mesh",
250
+ )
251
+ parser.add_argument(
252
+ "--output",
253
+ metavar="<image_file>",
254
+ default="outputres.png",
255
+ help="File name to save output to",
256
+ )
257
+
258
+ @classmethod
259
+ def setup_config(
260
+ cls: type, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str]
261
+ ):
262
+ opts.append("MODEL.ROI_HEADS.SCORE_THRESH_TEST")
263
+ opts.append(str(args.min_score))
264
+ if args.nms_thresh is not None:
265
+ opts.append("MODEL.ROI_HEADS.NMS_THRESH_TEST")
266
+ opts.append(str(args.nms_thresh))
267
+ cfg = super(ShowAction, cls).setup_config(config_fpath, model_fpath, args, opts)
268
+ return cfg
269
+
270
+ @classmethod
271
+ def execute_on_outputs(
272
+ cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
273
+ ):
274
+ import cv2
275
+ import numpy as np
276
+ visualizer = context["visualizer"]
277
+ extractor = context["extractor"]
278
+ # image_fpath = entry["file_name"]
279
+ # logger.info(f"Processing {image_fpath}")
280
+ image = cv2.cvtColor(entry["image"], cv2.COLOR_BGR2GRAY)
281
+ image = np.tile(image[:, :, np.newaxis], [1, 1, 3])
282
+ data = extractor(outputs)
283
+ image_vis = visualizer.visualize(image, data)
284
+
285
+ return image_vis
286
+ entry_idx = context["entry_idx"] + 1
287
+ out_fname = './image-densepose/' + image_fpath.split('/')[-1]
288
+ out_dir = './image-densepose'
289
+ out_dir = os.path.dirname(out_fname)
290
+ if len(out_dir) > 0 and not os.path.exists(out_dir):
291
+ os.makedirs(out_dir)
292
+ cv2.imwrite(out_fname, image_vis)
293
+ logger.info(f"Output saved to {out_fname}")
294
+ context["entry_idx"] += 1
295
+
296
+ @classmethod
297
+ def postexecute(cls: type, context: Dict[str, Any]):
298
+ pass
299
+ # python ./apply_net.py show ./configs/densepose_rcnn_R_50_FPN_s1x.yaml https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl /home/alin0222/DressCode/upper_body/images dp_segm -v --opts MODEL.DEVICE cpu
300
+
301
+ @classmethod
302
+ def _get_out_fname(cls: type, entry_idx: int, fname_base: str):
303
+ base, ext = os.path.splitext(fname_base)
304
+ return base + ".{0:04d}".format(entry_idx) + ext
305
+
306
+ @classmethod
307
+ def create_context(cls: type, args: argparse.Namespace, cfg: CfgNode) -> Dict[str, Any]:
308
+ vis_specs = args.visualizations.split(",")
309
+ visualizers = []
310
+ extractors = []
311
+ for vis_spec in vis_specs:
312
+ texture_atlas = get_texture_atlas(args.texture_atlas)
313
+ texture_atlases_dict = get_texture_atlases(args.texture_atlases_map)
314
+ vis = cls.VISUALIZERS[vis_spec](
315
+ cfg=cfg,
316
+ texture_atlas=texture_atlas,
317
+ texture_atlases_dict=texture_atlases_dict,
318
+ )
319
+ visualizers.append(vis)
320
+ extractor = create_extractor(vis)
321
+ extractors.append(extractor)
322
+ visualizer = CompoundVisualizer(visualizers)
323
+ extractor = CompoundExtractor(extractors)
324
+ context = {
325
+ "extractor": extractor,
326
+ "visualizer": visualizer,
327
+ "out_fname": args.output,
328
+ "entry_idx": 0,
329
+ }
330
+ return context
331
+
332
+
333
+ def create_argument_parser() -> argparse.ArgumentParser:
334
+ parser = argparse.ArgumentParser(
335
+ description=DOC,
336
+ formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120),
337
+ )
338
+ parser.set_defaults(func=lambda _: parser.print_help(sys.stdout))
339
+ subparsers = parser.add_subparsers(title="Actions")
340
+ for _, action in _ACTION_REGISTRY.items():
341
+ action.add_parser(subparsers)
342
+ return parser
343
+
344
+
345
+ def main():
346
+ parser = create_argument_parser()
347
+ args = parser.parse_args()
348
+ verbosity = getattr(args, "verbosity", None)
349
+ global logger
350
+ logger = setup_logger(name=LOGGER_NAME)
351
+ logger.setLevel(verbosity_to_level(verbosity))
352
+ args.func(args)
353
+
354
+
355
+ if __name__ == "__main__":
356
+ main()
357
+
358
+
359
+ # python ./apply_net.py show ./configs/densepose_rcnn_R_50_FPN_s1x.yaml https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl /home/alin0222/Dresscode/dresses/humanonly dp_segm -v --opts MODEL.DEVICE cuda
ckpt/densepose/.DS_Store ADDED
Binary file (6.15 kB). View file
 
ckpt/densepose/model_final_162be9.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8a7382001b16e453bad95ca9dbc68ae8f2b839b304cf90eaf5c27fbdb4dae91
3
+ size 255757821
ckpt/humanparsing/parsing_atr.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04c7d1d070d0e0ae943d86b18cb5aaaea9e278d97462e9cfb270cbbe4cd977f4
3
+ size 266859305
ckpt/humanparsing/parsing_lip.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8436e1dae96e2601c373d1ace29c8f0978b16357d9038c17a8ba756cca376dbc
3
+ size 266863411
ckpt/openpose/.DS_Store ADDED
Binary file (6.15 kB). View file
 
ckpt/openpose/ckpts/body_pose_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25a948c16078b0f08e236bda51a385d855ef4c153598947c28c0d47ed94bb746
3
+ size 209267595
configs/Base-DensePose-RCNN-FPN.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ VERSION: 2
2
+ MODEL:
3
+ META_ARCHITECTURE: "GeneralizedRCNN"
4
+ BACKBONE:
5
+ NAME: "build_resnet_fpn_backbone"
6
+ RESNETS:
7
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
8
+ FPN:
9
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
10
+ ANCHOR_GENERATOR:
11
+ SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
12
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
13
+ RPN:
14
+ IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
15
+ PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
16
+ PRE_NMS_TOPK_TEST: 1000 # Per FPN level
17
+ # Detectron1 uses 2000 proposals per-batch,
18
+ # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
19
+ # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
20
+ POST_NMS_TOPK_TRAIN: 1000
21
+ POST_NMS_TOPK_TEST: 1000
22
+
23
+ DENSEPOSE_ON: True
24
+ ROI_HEADS:
25
+ NAME: "DensePoseROIHeads"
26
+ IN_FEATURES: ["p2", "p3", "p4", "p5"]
27
+ NUM_CLASSES: 1
28
+ ROI_BOX_HEAD:
29
+ NAME: "FastRCNNConvFCHead"
30
+ NUM_FC: 2
31
+ POOLER_RESOLUTION: 7
32
+ POOLER_SAMPLING_RATIO: 2
33
+ POOLER_TYPE: "ROIAlign"
34
+ ROI_DENSEPOSE_HEAD:
35
+ NAME: "DensePoseV1ConvXHead"
36
+ POOLER_TYPE: "ROIAlign"
37
+ NUM_COARSE_SEGM_CHANNELS: 2
38
+ DATASETS:
39
+ TRAIN: ("densepose_coco_2014_train", "densepose_coco_2014_valminusminival")
40
+ TEST: ("densepose_coco_2014_minival",)
41
+ SOLVER:
42
+ IMS_PER_BATCH: 16
43
+ BASE_LR: 0.01
44
+ STEPS: (60000, 80000)
45
+ MAX_ITER: 90000
46
+ WARMUP_FACTOR: 0.1
47
+ INPUT:
48
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w32_s1x.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "../Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33dYBMemi9xOUFR0w"
4
+ BACKBONE:
5
+ NAME: "build_hrfpn_backbone"
6
+ RPN:
7
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
8
+ ROI_HEADS:
9
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
13
+ CLIP_GRADIENTS:
14
+ ENABLED: True
15
+ CLIP_TYPE: "norm"
16
+ BASE_LR: 0.03
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w40_s1x.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "../Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33ck0gvo5jfoWBOPo"
4
+ BACKBONE:
5
+ NAME: "build_hrfpn_backbone"
6
+ RPN:
7
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
8
+ ROI_HEADS:
9
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
10
+ HRNET:
11
+ STAGE2:
12
+ NUM_CHANNELS: [40, 80]
13
+ STAGE3:
14
+ NUM_CHANNELS: [40, 80, 160]
15
+ STAGE4:
16
+ NUM_CHANNELS: [40, 80, 160, 320]
17
+ SOLVER:
18
+ MAX_ITER: 130000
19
+ STEPS: (100000, 120000)
20
+ CLIP_GRADIENTS:
21
+ ENABLED: True
22
+ CLIP_TYPE: "norm"
23
+ BASE_LR: 0.03
configs/HRNet/densepose_rcnn_HRFPN_HRNet_w48_s1x.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "../Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://1drv.ms/u/s!Aus8VCZ_C_33dKvqI6pBZlifgJk"
4
+ BACKBONE:
5
+ NAME: "build_hrfpn_backbone"
6
+ RPN:
7
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
8
+ ROI_HEADS:
9
+ IN_FEATURES: ['p1', 'p2', 'p3', 'p4', 'p5']
10
+ HRNET:
11
+ STAGE2:
12
+ NUM_CHANNELS: [48, 96]
13
+ STAGE3:
14
+ NUM_CHANNELS: [48, 96, 192]
15
+ STAGE4:
16
+ NUM_CHANNELS: [48, 96, 192, 384]
17
+ SOLVER:
18
+ MAX_ITER: 130000
19
+ STEPS: (100000, 120000)
20
+ CLIP_GRADIENTS:
21
+ ENABLED: True
22
+ CLIP_TYPE: "norm"
23
+ BASE_LR: 0.03
configs/cse/Base-DensePose-RCNN-FPN-Human.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ ROI_DENSEPOSE_HEAD:
4
+ CSE:
5
+ EMBEDDERS:
6
+ "smpl_27554":
7
+ TYPE: vertex_feature
8
+ NUM_VERTICES: 27554
9
+ FEATURE_DIM: 256
10
+ FEATURES_TRAINABLE: False
11
+ IS_TRAINABLE: True
12
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_smpl_27554_256.pkl"
13
+ DATASETS:
14
+ TRAIN:
15
+ - "densepose_coco_2014_train_cse"
16
+ - "densepose_coco_2014_valminusminival_cse"
17
+ TEST:
18
+ - "densepose_coco_2014_minival_cse"
19
+ CLASS_TO_MESH_NAME_MAPPING:
20
+ "0": "smpl_27554"
configs/cse/Base-DensePose-RCNN-FPN.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ VERSION: 2
2
+ MODEL:
3
+ META_ARCHITECTURE: "GeneralizedRCNN"
4
+ BACKBONE:
5
+ NAME: "build_resnet_fpn_backbone"
6
+ RESNETS:
7
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
8
+ FPN:
9
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
10
+ ANCHOR_GENERATOR:
11
+ SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
12
+ ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
13
+ RPN:
14
+ IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
15
+ PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
16
+ PRE_NMS_TOPK_TEST: 1000 # Per FPN level
17
+ # Detectron1 uses 2000 proposals per-batch,
18
+ # (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
19
+ # which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
20
+ POST_NMS_TOPK_TRAIN: 1000
21
+ POST_NMS_TOPK_TEST: 1000
22
+
23
+ DENSEPOSE_ON: True
24
+ ROI_HEADS:
25
+ NAME: "DensePoseROIHeads"
26
+ IN_FEATURES: ["p2", "p3", "p4", "p5"]
27
+ NUM_CLASSES: 1
28
+ ROI_BOX_HEAD:
29
+ NAME: "FastRCNNConvFCHead"
30
+ NUM_FC: 2
31
+ POOLER_RESOLUTION: 7
32
+ POOLER_SAMPLING_RATIO: 2
33
+ POOLER_TYPE: "ROIAlign"
34
+ ROI_DENSEPOSE_HEAD:
35
+ NAME: "DensePoseV1ConvXHead"
36
+ POOLER_TYPE: "ROIAlign"
37
+ NUM_COARSE_SEGM_CHANNELS: 2
38
+ PREDICTOR_NAME: "DensePoseEmbeddingPredictor"
39
+ LOSS_NAME: "DensePoseCseLoss"
40
+ CSE:
41
+ # embedding loss, possible values:
42
+ # - "EmbeddingLoss"
43
+ # - "SoftEmbeddingLoss"
44
+ EMBED_LOSS_NAME: "EmbeddingLoss"
45
+ SOLVER:
46
+ IMS_PER_BATCH: 16
47
+ BASE_LR: 0.01
48
+ STEPS: (60000, 80000)
49
+ MAX_ITER: 90000
50
+ WARMUP_FACTOR: 0.1
51
+ CLIP_GRADIENTS:
52
+ CLIP_TYPE: norm
53
+ CLIP_VALUE: 1.0
54
+ ENABLED: true
55
+ NORM_TYPE: 2.0
56
+ INPUT:
57
+ MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
58
+ DENSEPOSE_EVALUATION:
59
+ TYPE: cse
60
+ STORAGE: file
configs/cse/densepose_rcnn_R_101_FPN_DL_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "EmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_101_FPN_DL_soft_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_101_FPN_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseV1ConvXHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "EmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_101_FPN_soft_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseV1ConvXHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_50_FPN_DL_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "EmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_50_FPN_DL_soft_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseV1ConvXHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "EmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_16k.yaml ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 1
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
+ EMBEDDERS:
16
+ "cat_7466":
17
+ TYPE: vertex_feature
18
+ NUM_VERTICES: 7466
19
+ FEATURE_DIM: 256
20
+ FEATURES_TRAINABLE: False
21
+ IS_TRAINABLE: True
22
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
23
+ "dog_7466":
24
+ TYPE: vertex_feature
25
+ NUM_VERTICES: 7466
26
+ FEATURE_DIM: 256
27
+ FEATURES_TRAINABLE: False
28
+ IS_TRAINABLE: True
29
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
30
+ "sheep_5004":
31
+ TYPE: vertex_feature
32
+ NUM_VERTICES: 5004
33
+ FEATURE_DIM: 256
34
+ FEATURES_TRAINABLE: False
35
+ IS_TRAINABLE: True
36
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
+ "horse_5004":
38
+ TYPE: vertex_feature
39
+ NUM_VERTICES: 5004
40
+ FEATURE_DIM: 256
41
+ FEATURES_TRAINABLE: False
42
+ IS_TRAINABLE: True
43
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
+ "zebra_5002":
45
+ TYPE: vertex_feature
46
+ NUM_VERTICES: 5002
47
+ FEATURE_DIM: 256
48
+ FEATURES_TRAINABLE: False
49
+ IS_TRAINABLE: True
50
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
+ "giraffe_5002":
52
+ TYPE: vertex_feature
53
+ NUM_VERTICES: 5002
54
+ FEATURE_DIM: 256
55
+ FEATURES_TRAINABLE: False
56
+ IS_TRAINABLE: True
57
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
+ "elephant_5002":
59
+ TYPE: vertex_feature
60
+ NUM_VERTICES: 5002
61
+ FEATURE_DIM: 256
62
+ FEATURES_TRAINABLE: False
63
+ IS_TRAINABLE: True
64
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
+ "cow_5002":
66
+ TYPE: vertex_feature
67
+ NUM_VERTICES: 5002
68
+ FEATURE_DIM: 256
69
+ FEATURES_TRAINABLE: False
70
+ IS_TRAINABLE: True
71
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
+ "bear_4936":
73
+ TYPE: vertex_feature
74
+ NUM_VERTICES: 4936
75
+ FEATURE_DIM: 256
76
+ FEATURES_TRAINABLE: False
77
+ IS_TRAINABLE: True
78
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
+ DATASETS:
80
+ TRAIN:
81
+ - "densepose_lvis_v1_ds2_train_v1"
82
+ TEST:
83
+ - "densepose_lvis_v1_ds2_val_v1"
84
+ WHITELISTED_CATEGORIES:
85
+ "densepose_lvis_v1_ds2_train_v1":
86
+ - 943 # sheep
87
+ - 1202 # zebra
88
+ - 569 # horse
89
+ - 496 # giraffe
90
+ - 422 # elephant
91
+ - 80 # cow
92
+ - 76 # bear
93
+ - 225 # cat
94
+ - 378 # dog
95
+ "densepose_lvis_v1_ds2_val_v1":
96
+ - 943 # sheep
97
+ - 1202 # zebra
98
+ - 569 # horse
99
+ - 496 # giraffe
100
+ - 422 # elephant
101
+ - 80 # cow
102
+ - 76 # bear
103
+ - 225 # cat
104
+ - 378 # dog
105
+ CATEGORY_MAPS:
106
+ "densepose_lvis_v1_ds2_train_v1":
107
+ "1202": 943 # zebra -> sheep
108
+ "569": 943 # horse -> sheep
109
+ "496": 943 # giraffe -> sheep
110
+ "422": 943 # elephant -> sheep
111
+ "80": 943 # cow -> sheep
112
+ "76": 943 # bear -> sheep
113
+ "225": 943 # cat -> sheep
114
+ "378": 943 # dog -> sheep
115
+ "densepose_lvis_v1_ds2_val_v1":
116
+ "1202": 943 # zebra -> sheep
117
+ "569": 943 # horse -> sheep
118
+ "496": 943 # giraffe -> sheep
119
+ "422": 943 # elephant -> sheep
120
+ "80": 943 # cow -> sheep
121
+ "76": 943 # bear -> sheep
122
+ "225": 943 # cat -> sheep
123
+ "378": 943 # dog -> sheep
124
+ CLASS_TO_MESH_NAME_MAPPING:
125
+ # Note: different classes are mapped to a single class
126
+ # mesh is chosen based on GT data, so this is just some
127
+ # value which has no particular meaning
128
+ "0": "sheep_5004"
129
+ SOLVER:
130
+ MAX_ITER: 16000
131
+ STEPS: (12000, 14000)
132
+ DENSEPOSE_EVALUATION:
133
+ EVALUATE_MESH_ALIGNMENT: True
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_CA_finetune_4k.yaml ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 1
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
+ EMBEDDERS:
16
+ "cat_5001":
17
+ TYPE: vertex_feature
18
+ NUM_VERTICES: 5001
19
+ FEATURE_DIM: 256
20
+ FEATURES_TRAINABLE: False
21
+ IS_TRAINABLE: True
22
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_5001_256.pkl"
23
+ "dog_5002":
24
+ TYPE: vertex_feature
25
+ NUM_VERTICES: 5002
26
+ FEATURE_DIM: 256
27
+ FEATURES_TRAINABLE: False
28
+ IS_TRAINABLE: True
29
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_5002_256.pkl"
30
+ "sheep_5004":
31
+ TYPE: vertex_feature
32
+ NUM_VERTICES: 5004
33
+ FEATURE_DIM: 256
34
+ FEATURES_TRAINABLE: False
35
+ IS_TRAINABLE: True
36
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
+ "horse_5004":
38
+ TYPE: vertex_feature
39
+ NUM_VERTICES: 5004
40
+ FEATURE_DIM: 256
41
+ FEATURES_TRAINABLE: False
42
+ IS_TRAINABLE: True
43
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
+ "zebra_5002":
45
+ TYPE: vertex_feature
46
+ NUM_VERTICES: 5002
47
+ FEATURE_DIM: 256
48
+ FEATURES_TRAINABLE: False
49
+ IS_TRAINABLE: True
50
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
+ "giraffe_5002":
52
+ TYPE: vertex_feature
53
+ NUM_VERTICES: 5002
54
+ FEATURE_DIM: 256
55
+ FEATURES_TRAINABLE: False
56
+ IS_TRAINABLE: True
57
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
+ "elephant_5002":
59
+ TYPE: vertex_feature
60
+ NUM_VERTICES: 5002
61
+ FEATURE_DIM: 256
62
+ FEATURES_TRAINABLE: False
63
+ IS_TRAINABLE: True
64
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
+ "cow_5002":
66
+ TYPE: vertex_feature
67
+ NUM_VERTICES: 5002
68
+ FEATURE_DIM: 256
69
+ FEATURES_TRAINABLE: False
70
+ IS_TRAINABLE: True
71
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
+ "bear_4936":
73
+ TYPE: vertex_feature
74
+ NUM_VERTICES: 4936
75
+ FEATURE_DIM: 256
76
+ FEATURES_TRAINABLE: False
77
+ IS_TRAINABLE: True
78
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
+ DATASETS:
80
+ TRAIN:
81
+ - "densepose_lvis_v1_ds1_train_v1"
82
+ TEST:
83
+ - "densepose_lvis_v1_ds1_val_v1"
84
+ WHITELISTED_CATEGORIES:
85
+ "densepose_lvis_v1_ds1_train_v1":
86
+ - 943 # sheep
87
+ - 1202 # zebra
88
+ - 569 # horse
89
+ - 496 # giraffe
90
+ - 422 # elephant
91
+ - 80 # cow
92
+ - 76 # bear
93
+ - 225 # cat
94
+ - 378 # dog
95
+ "densepose_lvis_v1_ds1_val_v1":
96
+ - 943 # sheep
97
+ - 1202 # zebra
98
+ - 569 # horse
99
+ - 496 # giraffe
100
+ - 422 # elephant
101
+ - 80 # cow
102
+ - 76 # bear
103
+ - 225 # cat
104
+ - 378 # dog
105
+ CATEGORY_MAPS:
106
+ "densepose_lvis_v1_ds1_train_v1":
107
+ "1202": 943 # zebra -> sheep
108
+ "569": 943 # horse -> sheep
109
+ "496": 943 # giraffe -> sheep
110
+ "422": 943 # elephant -> sheep
111
+ "80": 943 # cow -> sheep
112
+ "76": 943 # bear -> sheep
113
+ "225": 943 # cat -> sheep
114
+ "378": 943 # dog -> sheep
115
+ "densepose_lvis_v1_ds1_val_v1":
116
+ "1202": 943 # zebra -> sheep
117
+ "569": 943 # horse -> sheep
118
+ "496": 943 # giraffe -> sheep
119
+ "422": 943 # elephant -> sheep
120
+ "80": 943 # cow -> sheep
121
+ "76": 943 # bear -> sheep
122
+ "225": 943 # cat -> sheep
123
+ "378": 943 # dog -> sheep
124
+ CLASS_TO_MESH_NAME_MAPPING:
125
+ # Note: different classes are mapped to a single class
126
+ # mesh is chosen based on GT data, so this is just some
127
+ # value which has no particular meaning
128
+ "0": "sheep_5004"
129
+ SOLVER:
130
+ MAX_ITER: 4000
131
+ STEPS: (3000, 3500)
132
+ DENSEPOSE_EVALUATION:
133
+ EVALUATE_MESH_ALIGNMENT: True
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_16k.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k/270668502/model_final_21b1d2.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 9
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
+ EMBEDDERS:
16
+ "cat_7466":
17
+ TYPE: vertex_feature
18
+ NUM_VERTICES: 7466
19
+ FEATURE_DIM: 256
20
+ FEATURES_TRAINABLE: False
21
+ IS_TRAINABLE: True
22
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
23
+ "dog_7466":
24
+ TYPE: vertex_feature
25
+ NUM_VERTICES: 7466
26
+ FEATURE_DIM: 256
27
+ FEATURES_TRAINABLE: False
28
+ IS_TRAINABLE: True
29
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
30
+ "sheep_5004":
31
+ TYPE: vertex_feature
32
+ NUM_VERTICES: 5004
33
+ FEATURE_DIM: 256
34
+ FEATURES_TRAINABLE: False
35
+ IS_TRAINABLE: True
36
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
+ "horse_5004":
38
+ TYPE: vertex_feature
39
+ NUM_VERTICES: 5004
40
+ FEATURE_DIM: 256
41
+ FEATURES_TRAINABLE: False
42
+ IS_TRAINABLE: True
43
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
+ "zebra_5002":
45
+ TYPE: vertex_feature
46
+ NUM_VERTICES: 5002
47
+ FEATURE_DIM: 256
48
+ FEATURES_TRAINABLE: False
49
+ IS_TRAINABLE: True
50
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
+ "giraffe_5002":
52
+ TYPE: vertex_feature
53
+ NUM_VERTICES: 5002
54
+ FEATURE_DIM: 256
55
+ FEATURES_TRAINABLE: False
56
+ IS_TRAINABLE: True
57
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
+ "elephant_5002":
59
+ TYPE: vertex_feature
60
+ NUM_VERTICES: 5002
61
+ FEATURE_DIM: 256
62
+ FEATURES_TRAINABLE: False
63
+ IS_TRAINABLE: True
64
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
+ "cow_5002":
66
+ TYPE: vertex_feature
67
+ NUM_VERTICES: 5002
68
+ FEATURE_DIM: 256
69
+ FEATURES_TRAINABLE: False
70
+ IS_TRAINABLE: True
71
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
+ "bear_4936":
73
+ TYPE: vertex_feature
74
+ NUM_VERTICES: 4936
75
+ FEATURE_DIM: 256
76
+ FEATURES_TRAINABLE: False
77
+ IS_TRAINABLE: True
78
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
+ DATASETS:
80
+ TRAIN:
81
+ - "densepose_lvis_v1_ds2_train_v1"
82
+ TEST:
83
+ - "densepose_lvis_v1_ds2_val_v1"
84
+ WHITELISTED_CATEGORIES:
85
+ "densepose_lvis_v1_ds2_train_v1":
86
+ - 943 # sheep
87
+ - 1202 # zebra
88
+ - 569 # horse
89
+ - 496 # giraffe
90
+ - 422 # elephant
91
+ - 80 # cow
92
+ - 76 # bear
93
+ - 225 # cat
94
+ - 378 # dog
95
+ "densepose_lvis_v1_ds2_val_v1":
96
+ - 943 # sheep
97
+ - 1202 # zebra
98
+ - 569 # horse
99
+ - 496 # giraffe
100
+ - 422 # elephant
101
+ - 80 # cow
102
+ - 76 # bear
103
+ - 225 # cat
104
+ - 378 # dog
105
+ CLASS_TO_MESH_NAME_MAPPING:
106
+ "0": "bear_4936"
107
+ "1": "cow_5002"
108
+ "2": "cat_7466"
109
+ "3": "dog_7466"
110
+ "4": "elephant_5002"
111
+ "5": "giraffe_5002"
112
+ "6": "horse_5004"
113
+ "7": "sheep_5004"
114
+ "8": "zebra_5002"
115
+ SOLVER:
116
+ MAX_ITER: 16000
117
+ STEPS: (12000, 14000)
118
+ DENSEPOSE_EVALUATION:
119
+ EVALUATE_MESH_ALIGNMENT: True
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_i2m_16k.yaml ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k/270668502/model_final_21b1d2.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 9
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
+ PIX_TO_SHAPE_CYCLE_LOSS:
16
+ ENABLED: True
17
+ EMBEDDERS:
18
+ "cat_7466":
19
+ TYPE: vertex_feature
20
+ NUM_VERTICES: 7466
21
+ FEATURE_DIM: 256
22
+ FEATURES_TRAINABLE: False
23
+ IS_TRAINABLE: True
24
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
25
+ "dog_7466":
26
+ TYPE: vertex_feature
27
+ NUM_VERTICES: 7466
28
+ FEATURE_DIM: 256
29
+ FEATURES_TRAINABLE: False
30
+ IS_TRAINABLE: True
31
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
32
+ "sheep_5004":
33
+ TYPE: vertex_feature
34
+ NUM_VERTICES: 5004
35
+ FEATURE_DIM: 256
36
+ FEATURES_TRAINABLE: False
37
+ IS_TRAINABLE: True
38
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
39
+ "horse_5004":
40
+ TYPE: vertex_feature
41
+ NUM_VERTICES: 5004
42
+ FEATURE_DIM: 256
43
+ FEATURES_TRAINABLE: False
44
+ IS_TRAINABLE: True
45
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
46
+ "zebra_5002":
47
+ TYPE: vertex_feature
48
+ NUM_VERTICES: 5002
49
+ FEATURE_DIM: 256
50
+ FEATURES_TRAINABLE: False
51
+ IS_TRAINABLE: True
52
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
53
+ "giraffe_5002":
54
+ TYPE: vertex_feature
55
+ NUM_VERTICES: 5002
56
+ FEATURE_DIM: 256
57
+ FEATURES_TRAINABLE: False
58
+ IS_TRAINABLE: True
59
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
60
+ "elephant_5002":
61
+ TYPE: vertex_feature
62
+ NUM_VERTICES: 5002
63
+ FEATURE_DIM: 256
64
+ FEATURES_TRAINABLE: False
65
+ IS_TRAINABLE: True
66
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
67
+ "cow_5002":
68
+ TYPE: vertex_feature
69
+ NUM_VERTICES: 5002
70
+ FEATURE_DIM: 256
71
+ FEATURES_TRAINABLE: False
72
+ IS_TRAINABLE: True
73
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
74
+ "bear_4936":
75
+ TYPE: vertex_feature
76
+ NUM_VERTICES: 4936
77
+ FEATURE_DIM: 256
78
+ FEATURES_TRAINABLE: False
79
+ IS_TRAINABLE: True
80
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
81
+ DATASETS:
82
+ TRAIN:
83
+ - "densepose_lvis_v1_ds2_train_v1"
84
+ TEST:
85
+ - "densepose_lvis_v1_ds2_val_v1"
86
+ WHITELISTED_CATEGORIES:
87
+ "densepose_lvis_v1_ds2_train_v1":
88
+ - 943 # sheep
89
+ - 1202 # zebra
90
+ - 569 # horse
91
+ - 496 # giraffe
92
+ - 422 # elephant
93
+ - 80 # cow
94
+ - 76 # bear
95
+ - 225 # cat
96
+ - 378 # dog
97
+ "densepose_lvis_v1_ds2_val_v1":
98
+ - 943 # sheep
99
+ - 1202 # zebra
100
+ - 569 # horse
101
+ - 496 # giraffe
102
+ - 422 # elephant
103
+ - 80 # cow
104
+ - 76 # bear
105
+ - 225 # cat
106
+ - 378 # dog
107
+ CLASS_TO_MESH_NAME_MAPPING:
108
+ "0": "bear_4936"
109
+ "1": "cow_5002"
110
+ "2": "cat_7466"
111
+ "3": "dog_7466"
112
+ "4": "elephant_5002"
113
+ "5": "giraffe_5002"
114
+ "6": "horse_5004"
115
+ "7": "sheep_5004"
116
+ "8": "zebra_5002"
117
+ SOLVER:
118
+ MAX_ITER: 16000
119
+ STEPS: (12000, 14000)
120
+ DENSEPOSE_EVALUATION:
121
+ EVALUATE_MESH_ALIGNMENT: True
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_I0_finetune_m2m_16k.yaml ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k/267687159/model_final_354e61.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 9
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
+ SHAPE_TO_SHAPE_CYCLE_LOSS:
16
+ ENABLED: True
17
+ EMBEDDERS:
18
+ "cat_7466":
19
+ TYPE: vertex_feature
20
+ NUM_VERTICES: 7466
21
+ FEATURE_DIM: 256
22
+ FEATURES_TRAINABLE: False
23
+ IS_TRAINABLE: True
24
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
25
+ "dog_7466":
26
+ TYPE: vertex_feature
27
+ NUM_VERTICES: 7466
28
+ FEATURE_DIM: 256
29
+ FEATURES_TRAINABLE: False
30
+ IS_TRAINABLE: True
31
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
32
+ "sheep_5004":
33
+ TYPE: vertex_feature
34
+ NUM_VERTICES: 5004
35
+ FEATURE_DIM: 256
36
+ FEATURES_TRAINABLE: False
37
+ IS_TRAINABLE: True
38
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
39
+ "horse_5004":
40
+ TYPE: vertex_feature
41
+ NUM_VERTICES: 5004
42
+ FEATURE_DIM: 256
43
+ FEATURES_TRAINABLE: False
44
+ IS_TRAINABLE: True
45
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
46
+ "zebra_5002":
47
+ TYPE: vertex_feature
48
+ NUM_VERTICES: 5002
49
+ FEATURE_DIM: 256
50
+ FEATURES_TRAINABLE: False
51
+ IS_TRAINABLE: True
52
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
53
+ "giraffe_5002":
54
+ TYPE: vertex_feature
55
+ NUM_VERTICES: 5002
56
+ FEATURE_DIM: 256
57
+ FEATURES_TRAINABLE: False
58
+ IS_TRAINABLE: True
59
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
60
+ "elephant_5002":
61
+ TYPE: vertex_feature
62
+ NUM_VERTICES: 5002
63
+ FEATURE_DIM: 256
64
+ FEATURES_TRAINABLE: False
65
+ IS_TRAINABLE: True
66
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
67
+ "cow_5002":
68
+ TYPE: vertex_feature
69
+ NUM_VERTICES: 5002
70
+ FEATURE_DIM: 256
71
+ FEATURES_TRAINABLE: False
72
+ IS_TRAINABLE: True
73
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
74
+ "bear_4936":
75
+ TYPE: vertex_feature
76
+ NUM_VERTICES: 4936
77
+ FEATURE_DIM: 256
78
+ FEATURES_TRAINABLE: False
79
+ IS_TRAINABLE: True
80
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
81
+ "smpl_27554":
82
+ TYPE: vertex_feature
83
+ NUM_VERTICES: 27554
84
+ FEATURE_DIM: 256
85
+ FEATURES_TRAINABLE: False
86
+ IS_TRAINABLE: True
87
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_smpl_27554_256.pkl"
88
+ DATASETS:
89
+ TRAIN:
90
+ - "densepose_lvis_v1_ds2_train_v1"
91
+ TEST:
92
+ - "densepose_lvis_v1_ds2_val_v1"
93
+ WHITELISTED_CATEGORIES:
94
+ "densepose_lvis_v1_ds2_train_v1":
95
+ - 943 # sheep
96
+ - 1202 # zebra
97
+ - 569 # horse
98
+ - 496 # giraffe
99
+ - 422 # elephant
100
+ - 80 # cow
101
+ - 76 # bear
102
+ - 225 # cat
103
+ - 378 # dog
104
+ "densepose_lvis_v1_ds2_val_v1":
105
+ - 943 # sheep
106
+ - 1202 # zebra
107
+ - 569 # horse
108
+ - 496 # giraffe
109
+ - 422 # elephant
110
+ - 80 # cow
111
+ - 76 # bear
112
+ - 225 # cat
113
+ - 378 # dog
114
+ CLASS_TO_MESH_NAME_MAPPING:
115
+ "0": "bear_4936"
116
+ "1": "cow_5002"
117
+ "2": "cat_7466"
118
+ "3": "dog_7466"
119
+ "4": "elephant_5002"
120
+ "5": "giraffe_5002"
121
+ "6": "horse_5004"
122
+ "7": "sheep_5004"
123
+ "8": "zebra_5002"
124
+ SOLVER:
125
+ MAX_ITER: 16000
126
+ STEPS: (12000, 14000)
127
+ DENSEPOSE_EVALUATION:
128
+ EVALUATE_MESH_ALIGNMENT: True
129
+ MESH_ALIGNMENT_MESH_NAMES:
130
+ - bear_4936
131
+ - cow_5002
132
+ - cat_7466
133
+ - dog_7466
134
+ - elephant_5002
135
+ - giraffe_5002
136
+ - horse_5004
137
+ - sheep_5004
138
+ - zebra_5002
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_16k.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 9
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
+ EMBEDDERS:
16
+ "cat_7466":
17
+ TYPE: vertex_feature
18
+ NUM_VERTICES: 7466
19
+ FEATURE_DIM: 256
20
+ FEATURES_TRAINABLE: False
21
+ IS_TRAINABLE: True
22
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
23
+ "dog_7466":
24
+ TYPE: vertex_feature
25
+ NUM_VERTICES: 7466
26
+ FEATURE_DIM: 256
27
+ FEATURES_TRAINABLE: False
28
+ IS_TRAINABLE: True
29
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
30
+ "sheep_5004":
31
+ TYPE: vertex_feature
32
+ NUM_VERTICES: 5004
33
+ FEATURE_DIM: 256
34
+ FEATURES_TRAINABLE: False
35
+ IS_TRAINABLE: True
36
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
+ "horse_5004":
38
+ TYPE: vertex_feature
39
+ NUM_VERTICES: 5004
40
+ FEATURE_DIM: 256
41
+ FEATURES_TRAINABLE: False
42
+ IS_TRAINABLE: True
43
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
+ "zebra_5002":
45
+ TYPE: vertex_feature
46
+ NUM_VERTICES: 5002
47
+ FEATURE_DIM: 256
48
+ FEATURES_TRAINABLE: False
49
+ IS_TRAINABLE: True
50
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
+ "giraffe_5002":
52
+ TYPE: vertex_feature
53
+ NUM_VERTICES: 5002
54
+ FEATURE_DIM: 256
55
+ FEATURES_TRAINABLE: False
56
+ IS_TRAINABLE: True
57
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
+ "elephant_5002":
59
+ TYPE: vertex_feature
60
+ NUM_VERTICES: 5002
61
+ FEATURE_DIM: 256
62
+ FEATURES_TRAINABLE: False
63
+ IS_TRAINABLE: True
64
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
+ "cow_5002":
66
+ TYPE: vertex_feature
67
+ NUM_VERTICES: 5002
68
+ FEATURE_DIM: 256
69
+ FEATURES_TRAINABLE: False
70
+ IS_TRAINABLE: True
71
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
+ "bear_4936":
73
+ TYPE: vertex_feature
74
+ NUM_VERTICES: 4936
75
+ FEATURE_DIM: 256
76
+ FEATURES_TRAINABLE: False
77
+ IS_TRAINABLE: True
78
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
+ DATASETS:
80
+ TRAIN:
81
+ - "densepose_lvis_v1_ds2_train_v1"
82
+ TEST:
83
+ - "densepose_lvis_v1_ds2_val_v1"
84
+ WHITELISTED_CATEGORIES:
85
+ "densepose_lvis_v1_ds2_train_v1":
86
+ - 943 # sheep
87
+ - 1202 # zebra
88
+ - 569 # horse
89
+ - 496 # giraffe
90
+ - 422 # elephant
91
+ - 80 # cow
92
+ - 76 # bear
93
+ - 225 # cat
94
+ - 378 # dog
95
+ "densepose_lvis_v1_ds2_val_v1":
96
+ - 943 # sheep
97
+ - 1202 # zebra
98
+ - 569 # horse
99
+ - 496 # giraffe
100
+ - 422 # elephant
101
+ - 80 # cow
102
+ - 76 # bear
103
+ - 225 # cat
104
+ - 378 # dog
105
+ CLASS_TO_MESH_NAME_MAPPING:
106
+ "0": "bear_4936"
107
+ "1": "cow_5002"
108
+ "2": "cat_7466"
109
+ "3": "dog_7466"
110
+ "4": "elephant_5002"
111
+ "5": "giraffe_5002"
112
+ "6": "horse_5004"
113
+ "7": "sheep_5004"
114
+ "8": "zebra_5002"
115
+ SOLVER:
116
+ MAX_ITER: 16000
117
+ STEPS: (12000, 14000)
118
+ DENSEPOSE_EVALUATION:
119
+ EVALUATE_MESH_ALIGNMENT: True
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_4k.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 9
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
14
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
15
+ EMBEDDERS:
16
+ "cat_5001":
17
+ TYPE: vertex_feature
18
+ NUM_VERTICES: 5001
19
+ FEATURE_DIM: 256
20
+ FEATURES_TRAINABLE: False
21
+ IS_TRAINABLE: True
22
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_5001_256.pkl"
23
+ "dog_5002":
24
+ TYPE: vertex_feature
25
+ NUM_VERTICES: 5002
26
+ FEATURE_DIM: 256
27
+ FEATURES_TRAINABLE: False
28
+ IS_TRAINABLE: True
29
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_5002_256.pkl"
30
+ "sheep_5004":
31
+ TYPE: vertex_feature
32
+ NUM_VERTICES: 5004
33
+ FEATURE_DIM: 256
34
+ FEATURES_TRAINABLE: False
35
+ IS_TRAINABLE: True
36
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
37
+ "horse_5004":
38
+ TYPE: vertex_feature
39
+ NUM_VERTICES: 5004
40
+ FEATURE_DIM: 256
41
+ FEATURES_TRAINABLE: False
42
+ IS_TRAINABLE: True
43
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
44
+ "zebra_5002":
45
+ TYPE: vertex_feature
46
+ NUM_VERTICES: 5002
47
+ FEATURE_DIM: 256
48
+ FEATURES_TRAINABLE: False
49
+ IS_TRAINABLE: True
50
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
51
+ "giraffe_5002":
52
+ TYPE: vertex_feature
53
+ NUM_VERTICES: 5002
54
+ FEATURE_DIM: 256
55
+ FEATURES_TRAINABLE: False
56
+ IS_TRAINABLE: True
57
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
58
+ "elephant_5002":
59
+ TYPE: vertex_feature
60
+ NUM_VERTICES: 5002
61
+ FEATURE_DIM: 256
62
+ FEATURES_TRAINABLE: False
63
+ IS_TRAINABLE: True
64
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
65
+ "cow_5002":
66
+ TYPE: vertex_feature
67
+ NUM_VERTICES: 5002
68
+ FEATURE_DIM: 256
69
+ FEATURES_TRAINABLE: False
70
+ IS_TRAINABLE: True
71
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
72
+ "bear_4936":
73
+ TYPE: vertex_feature
74
+ NUM_VERTICES: 4936
75
+ FEATURE_DIM: 256
76
+ FEATURES_TRAINABLE: False
77
+ IS_TRAINABLE: True
78
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
79
+ DATASETS:
80
+ TRAIN:
81
+ - "densepose_lvis_v1_ds1_train_v1"
82
+ TEST:
83
+ - "densepose_lvis_v1_ds1_val_v1"
84
+ WHITELISTED_CATEGORIES:
85
+ "densepose_lvis_v1_ds1_train_v1":
86
+ - 943 # sheep
87
+ - 1202 # zebra
88
+ - 569 # horse
89
+ - 496 # giraffe
90
+ - 422 # elephant
91
+ - 80 # cow
92
+ - 76 # bear
93
+ - 225 # cat
94
+ - 378 # dog
95
+ "densepose_lvis_v1_ds1_val_v1":
96
+ - 943 # sheep
97
+ - 1202 # zebra
98
+ - 569 # horse
99
+ - 496 # giraffe
100
+ - 422 # elephant
101
+ - 80 # cow
102
+ - 76 # bear
103
+ - 225 # cat
104
+ - 378 # dog
105
+ CLASS_TO_MESH_NAME_MAPPING:
106
+ "0": "bear_4936"
107
+ "1": "cow_5002"
108
+ "2": "cat_5001"
109
+ "3": "dog_5002"
110
+ "4": "elephant_5002"
111
+ "5": "giraffe_5002"
112
+ "6": "horse_5004"
113
+ "7": "sheep_5004"
114
+ "8": "zebra_5002"
115
+ SOLVER:
116
+ MAX_ITER: 4000
117
+ STEPS: (3000, 3500)
118
+ DENSEPOSE_EVALUATION:
119
+ EVALUATE_MESH_ALIGNMENT: True
configs/cse/densepose_rcnn_R_50_FPN_soft_animals_finetune_maskonly_24k.yaml ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_HEADS:
7
+ NUM_CLASSES: 9
8
+ ROI_DENSEPOSE_HEAD:
9
+ NAME: "DensePoseV1ConvXHead"
10
+ COARSE_SEGM_TRAINED_BY_MASKS: True
11
+ CSE:
12
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
13
+ EMBED_LOSS_WEIGHT: 0.0
14
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
15
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
16
+ EMBEDDERS:
17
+ "cat_7466":
18
+ TYPE: vertex_feature
19
+ NUM_VERTICES: 7466
20
+ FEATURE_DIM: 256
21
+ FEATURES_TRAINABLE: False
22
+ IS_TRAINABLE: True
23
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cat_7466_256.pkl"
24
+ "dog_7466":
25
+ TYPE: vertex_feature
26
+ NUM_VERTICES: 7466
27
+ FEATURE_DIM: 256
28
+ FEATURES_TRAINABLE: False
29
+ IS_TRAINABLE: True
30
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_dog_7466_256.pkl"
31
+ "sheep_5004":
32
+ TYPE: vertex_feature
33
+ NUM_VERTICES: 5004
34
+ FEATURE_DIM: 256
35
+ FEATURES_TRAINABLE: False
36
+ IS_TRAINABLE: True
37
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_sheep_5004_256.pkl"
38
+ "horse_5004":
39
+ TYPE: vertex_feature
40
+ NUM_VERTICES: 5004
41
+ FEATURE_DIM: 256
42
+ FEATURES_TRAINABLE: False
43
+ IS_TRAINABLE: True
44
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_horse_5004_256.pkl"
45
+ "zebra_5002":
46
+ TYPE: vertex_feature
47
+ NUM_VERTICES: 5002
48
+ FEATURE_DIM: 256
49
+ FEATURES_TRAINABLE: False
50
+ IS_TRAINABLE: True
51
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_zebra_5002_256.pkl"
52
+ "giraffe_5002":
53
+ TYPE: vertex_feature
54
+ NUM_VERTICES: 5002
55
+ FEATURE_DIM: 256
56
+ FEATURES_TRAINABLE: False
57
+ IS_TRAINABLE: True
58
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_giraffe_5002_256.pkl"
59
+ "elephant_5002":
60
+ TYPE: vertex_feature
61
+ NUM_VERTICES: 5002
62
+ FEATURE_DIM: 256
63
+ FEATURES_TRAINABLE: False
64
+ IS_TRAINABLE: True
65
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_elephant_5002_256.pkl"
66
+ "cow_5002":
67
+ TYPE: vertex_feature
68
+ NUM_VERTICES: 5002
69
+ FEATURE_DIM: 256
70
+ FEATURES_TRAINABLE: False
71
+ IS_TRAINABLE: True
72
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_cow_5002_256.pkl"
73
+ "bear_4936":
74
+ TYPE: vertex_feature
75
+ NUM_VERTICES: 4936
76
+ FEATURE_DIM: 256
77
+ FEATURES_TRAINABLE: False
78
+ IS_TRAINABLE: True
79
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_bear_4936_256.pkl"
80
+ DATASETS:
81
+ TRAIN:
82
+ - "densepose_lvis_v1_ds2_train_v1"
83
+ TEST:
84
+ - "densepose_lvis_v1_ds2_val_v1"
85
+ WHITELISTED_CATEGORIES:
86
+ "densepose_lvis_v1_ds2_train_v1":
87
+ - 943 # sheep
88
+ - 1202 # zebra
89
+ - 569 # horse
90
+ - 496 # giraffe
91
+ - 422 # elephant
92
+ - 80 # cow
93
+ - 76 # bear
94
+ - 225 # cat
95
+ - 378 # dog
96
+ "densepose_lvis_v1_ds2_val_v1":
97
+ - 943 # sheep
98
+ - 1202 # zebra
99
+ - 569 # horse
100
+ - 496 # giraffe
101
+ - 422 # elephant
102
+ - 80 # cow
103
+ - 76 # bear
104
+ - 225 # cat
105
+ - 378 # dog
106
+ CLASS_TO_MESH_NAME_MAPPING:
107
+ "0": "bear_4936"
108
+ "1": "cow_5002"
109
+ "2": "cat_7466"
110
+ "3": "dog_7466"
111
+ "4": "elephant_5002"
112
+ "5": "giraffe_5002"
113
+ "6": "horse_5004"
114
+ "7": "sheep_5004"
115
+ "8": "zebra_5002"
116
+ SOLVER:
117
+ MAX_ITER: 24000
118
+ STEPS: (20000, 22000)
configs/cse/densepose_rcnn_R_50_FPN_soft_chimps_finetune_4k.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_soft_s1x/250533982/model_final_2c4512.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseV1ConvXHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
+ EMBEDDING_DIST_GAUSS_SIGMA: 0.1
11
+ GEODESIC_DIST_GAUSS_SIGMA: 0.1
12
+ EMBEDDERS:
13
+ "chimp_5029":
14
+ TYPE: vertex_feature
15
+ NUM_VERTICES: 5029
16
+ FEATURE_DIM: 256
17
+ FEATURES_TRAINABLE: False
18
+ IS_TRAINABLE: True
19
+ INIT_FILE: "https://dl.fbaipublicfiles.com/densepose/data/cse/lbo/phi_chimp_5029_256.pkl"
20
+ DATASETS:
21
+ TRAIN:
22
+ - "densepose_chimps_cse_train"
23
+ TEST:
24
+ - "densepose_chimps_cse_val"
25
+ CLASS_TO_MESH_NAME_MAPPING:
26
+ "0": "chimp_5029"
27
+ SOLVER:
28
+ MAX_ITER: 4000
29
+ STEPS: (3000, 3500)
configs/cse/densepose_rcnn_R_50_FPN_soft_s1x.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN-Human.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseV1ConvXHead"
8
+ CSE:
9
+ EMBED_LOSS_NAME: "SoftEmbeddingLoss"
10
+ SOLVER:
11
+ MAX_ITER: 130000
12
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_101_FPN_DL_WC1M_s1x.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ UV_CONFIDENCE:
9
+ ENABLED: True
10
+ TYPE: "iid_iso"
11
+ SEGM_CONFIDENCE:
12
+ ENABLED: True
13
+ POINT_REGRESSION_WEIGHTS: 0.0005
14
+ SOLVER:
15
+ CLIP_GRADIENTS:
16
+ ENABLED: True
17
+ MAX_ITER: 130000
18
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_101_FPN_DL_WC1_s1x.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ UV_CONFIDENCE:
9
+ ENABLED: True
10
+ TYPE: "iid_iso"
11
+ POINT_REGRESSION_WEIGHTS: 0.0005
12
+ SOLVER:
13
+ CLIP_GRADIENTS:
14
+ ENABLED: True
15
+ MAX_ITER: 130000
16
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ UV_CONFIDENCE:
9
+ ENABLED: True
10
+ TYPE: "indep_aniso"
11
+ SEGM_CONFIDENCE:
12
+ ENABLED: True
13
+ POINT_REGRESSION_WEIGHTS: 0.0005
14
+ SOLVER:
15
+ CLIP_GRADIENTS:
16
+ ENABLED: True
17
+ MAX_ITER: 130000
18
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_101_FPN_DL_WC2_s1x.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ UV_CONFIDENCE:
9
+ ENABLED: True
10
+ TYPE: "indep_aniso"
11
+ POINT_REGRESSION_WEIGHTS: 0.0005
12
+ SOLVER:
13
+ CLIP_GRADIENTS:
14
+ ENABLED: True
15
+ MAX_ITER: 130000
16
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_101_FPN_DL_s1x.yaml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ SOLVER:
9
+ MAX_ITER: 130000
10
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_101_FPN_WC1M_s1x.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ UV_CONFIDENCE:
8
+ ENABLED: True
9
+ TYPE: "iid_iso"
10
+ SEGM_CONFIDENCE:
11
+ ENABLED: True
12
+ POINT_REGRESSION_WEIGHTS: 0.0005
13
+ SOLVER:
14
+ CLIP_GRADIENTS:
15
+ ENABLED: True
16
+ MAX_ITER: 130000
17
+ STEPS: (100000, 120000)
18
+ WARMUP_FACTOR: 0.025
configs/densepose_rcnn_R_101_FPN_WC1_s1x.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ UV_CONFIDENCE:
8
+ ENABLED: True
9
+ TYPE: "iid_iso"
10
+ POINT_REGRESSION_WEIGHTS: 0.0005
11
+ SOLVER:
12
+ CLIP_GRADIENTS:
13
+ ENABLED: True
14
+ MAX_ITER: 130000
15
+ STEPS: (100000, 120000)
16
+ WARMUP_FACTOR: 0.025
configs/densepose_rcnn_R_101_FPN_WC2M_s1x.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ UV_CONFIDENCE:
8
+ ENABLED: True
9
+ TYPE: "indep_aniso"
10
+ SEGM_CONFIDENCE:
11
+ ENABLED: True
12
+ POINT_REGRESSION_WEIGHTS: 0.0005
13
+ SOLVER:
14
+ CLIP_GRADIENTS:
15
+ ENABLED: True
16
+ MAX_ITER: 130000
17
+ STEPS: (100000, 120000)
18
+ WARMUP_FACTOR: 0.025
configs/densepose_rcnn_R_101_FPN_WC2_s1x.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ UV_CONFIDENCE:
8
+ ENABLED: True
9
+ TYPE: "indep_aniso"
10
+ POINT_REGRESSION_WEIGHTS: 0.0005
11
+ SOLVER:
12
+ CLIP_GRADIENTS:
13
+ ENABLED: True
14
+ MAX_ITER: 130000
15
+ STEPS: (100000, 120000)
16
+ WARMUP_FACTOR: 0.025
configs/densepose_rcnn_R_101_FPN_s1x.yaml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ SOLVER:
7
+ MAX_ITER: 130000
8
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_101_FPN_s1x_legacy.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
4
+ RESNETS:
5
+ DEPTH: 101
6
+ ROI_DENSEPOSE_HEAD:
7
+ NUM_COARSE_SEGM_CHANNELS: 15
8
+ POOLER_RESOLUTION: 14
9
+ HEATMAP_SIZE: 56
10
+ INDEX_WEIGHTS: 2.0
11
+ PART_WEIGHTS: 0.3
12
+ POINT_REGRESSION_WEIGHTS: 0.1
13
+ DECODER_ON: False
14
+ SOLVER:
15
+ BASE_LR: 0.002
16
+ MAX_ITER: 130000
17
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_50_FPN_DL_WC1M_s1x.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ UV_CONFIDENCE:
9
+ ENABLED: True
10
+ TYPE: "iid_iso"
11
+ SEGM_CONFIDENCE:
12
+ ENABLED: True
13
+ POINT_REGRESSION_WEIGHTS: 0.0005
14
+ SOLVER:
15
+ CLIP_GRADIENTS:
16
+ ENABLED: True
17
+ MAX_ITER: 130000
18
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_50_FPN_DL_WC1_s1x.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ UV_CONFIDENCE:
9
+ ENABLED: True
10
+ TYPE: "iid_iso"
11
+ POINT_REGRESSION_WEIGHTS: 0.0005
12
+ SOLVER:
13
+ CLIP_GRADIENTS:
14
+ ENABLED: True
15
+ MAX_ITER: 130000
16
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_50_FPN_DL_WC2M_s1x.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ UV_CONFIDENCE:
9
+ ENABLED: True
10
+ TYPE: "indep_aniso"
11
+ SEGM_CONFIDENCE:
12
+ ENABLED: True
13
+ POINT_REGRESSION_WEIGHTS: 0.0005
14
+ SOLVER:
15
+ CLIP_GRADIENTS:
16
+ ENABLED: True
17
+ MAX_ITER: 130000
18
+ STEPS: (100000, 120000)
configs/densepose_rcnn_R_50_FPN_DL_WC2_s1x.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _BASE_: "Base-DensePose-RCNN-FPN.yaml"
2
+ MODEL:
3
+ WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
4
+ RESNETS:
5
+ DEPTH: 50
6
+ ROI_DENSEPOSE_HEAD:
7
+ NAME: "DensePoseDeepLabHead"
8
+ UV_CONFIDENCE:
9
+ ENABLED: True
10
+ TYPE: "indep_aniso"
11
+ POINT_REGRESSION_WEIGHTS: 0.0005
12
+ SOLVER:
13
+ CLIP_GRADIENTS:
14
+ ENABLED: True
15
+ MAX_ITER: 130000
16
+ STEPS: (100000, 120000)